Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (8): 2934-2945.DOI: 10.6023/cjoc202302019 Previous Articles Next Articles
收稿日期:
2023-02-16
修回日期:
2023-03-19
发布日期:
2023-04-07
基金资助:
Shiguo Ou, Ruirui Chai, Jiahao Li, Dawei Wang(), Xinxin Sang()
Received:
2023-02-16
Revised:
2023-03-19
Published:
2023-04-07
Contact:
*E-mail: Supported by:
Share
Shiguo Ou, Ruirui Chai, Jiahao Li, Dawei Wang, Xinxin Sang. Metal-Organic Framework Derived Phytate-Iron for Efficient Synthesis of 2-Arylbenzoxazole via Hydrogen Transfer Strategy[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2934-2945.
Entry | Catalyst | Base | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|
1 | — | — | — | 150 | <5 |
2 | ZIF-L-Co@PA-Fe-0.08 | — | — | 150 | 80 |
3 | Fe(NO3)3 | — | — | 150 | 5 |
4 | ZIF-L-Co | 150 | 5 | ||
5 | PA | — | — | 150 | 35 |
6 | ZIF-L-Co@PA-Fe-0.02 | — | — | 150 | 10 |
7 | ZIF-L-Co@PA-Fe-0.04 | — | — | 150 | 35 |
8 | ZIF-L-Co@PA-Fe-0.06 | — | — | 150 | 61 |
9 | ZIF-L-Co@PA-Fe-0.1 | — | — | 150 | 78 |
10 | PA-Fe | — | — | 150 | <5 |
11 | ZIF-L-Co@PA-Fe-0.08 | — | DMF | 150 | <5 |
12 | ZIF-L-Co@PA-Fe-0.08 | — | DMSO | 150 | <5 |
13 | ZIF-L-Co@PA-Fe-0.08 | — | Toluene | 150 | 33 |
14 | ZIF-L-Co@PA-Fe-0.08 | — | p-Xylene | 150 | 68 |
15 | ZIF-L-Co@PA-Fe-0.08 | KOtBu | — | 150 | 44 |
16 | ZIF-L-Co@PA-Fe-0.08 | KOH | — | 150 | 19 |
17 | ZIF-L-Co@PA-Fe-0.08 | NaOtBu | — | 150 | 37 |
18 | ZIF-L-Co@PA-Fe-0.08 | Cs2CO3 | — | 150 | 51 |
19 | ZIF-L-Co@PA-Fe-0.08 | K2CO3 | — | 150 | 42 |
20 | ZIF-L-Co@PA-Fe-0.08 | — | — | 130 | 55 |
21 | ZIF-L-Co@PA-Fe-0.08 | — | — | 110 | 43 |
22c | ZIF-L-Co@PA-Fe-0.08 | — | — | 150 | 86 |
23d | ZIF-L-Co@PA-Fe-0.08 | — | — | 150 | 46 |
Entry | Catalyst | Base | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|
1 | — | — | — | 150 | <5 |
2 | ZIF-L-Co@PA-Fe-0.08 | — | — | 150 | 80 |
3 | Fe(NO3)3 | — | — | 150 | 5 |
4 | ZIF-L-Co | 150 | 5 | ||
5 | PA | — | — | 150 | 35 |
6 | ZIF-L-Co@PA-Fe-0.02 | — | — | 150 | 10 |
7 | ZIF-L-Co@PA-Fe-0.04 | — | — | 150 | 35 |
8 | ZIF-L-Co@PA-Fe-0.06 | — | — | 150 | 61 |
9 | ZIF-L-Co@PA-Fe-0.1 | — | — | 150 | 78 |
10 | PA-Fe | — | — | 150 | <5 |
11 | ZIF-L-Co@PA-Fe-0.08 | — | DMF | 150 | <5 |
12 | ZIF-L-Co@PA-Fe-0.08 | — | DMSO | 150 | <5 |
13 | ZIF-L-Co@PA-Fe-0.08 | — | Toluene | 150 | 33 |
14 | ZIF-L-Co@PA-Fe-0.08 | — | p-Xylene | 150 | 68 |
15 | ZIF-L-Co@PA-Fe-0.08 | KOtBu | — | 150 | 44 |
16 | ZIF-L-Co@PA-Fe-0.08 | KOH | — | 150 | 19 |
17 | ZIF-L-Co@PA-Fe-0.08 | NaOtBu | — | 150 | 37 |
18 | ZIF-L-Co@PA-Fe-0.08 | Cs2CO3 | — | 150 | 51 |
19 | ZIF-L-Co@PA-Fe-0.08 | K2CO3 | — | 150 | 42 |
20 | ZIF-L-Co@PA-Fe-0.08 | — | — | 130 | 55 |
21 | ZIF-L-Co@PA-Fe-0.08 | — | — | 110 | 43 |
22c | ZIF-L-Co@PA-Fe-0.08 | — | — | 150 | 86 |
23d | ZIF-L-Co@PA-Fe-0.08 | — | — | 150 | 46 |
[3] |
(a) Moghaddam, F. M.; Saberi, V.; Kalhor, S.; Veisi, N. Appl. Organomet. Chem. 2018, 32, e4240.
doi: 10.1002/aoc.v32.4 |
(b) Sahu, P. K. RSC Adv. 2017, 7, 42000.
doi: 10.1039/C6RA25293A |
|
(c) Li, Z.; Wang, Q.; Pu, M.; Yang, Z.; Lei, M. Acta Chim. Sinica 2020, 78, 437. (in Chinese)
doi: 10.6023/A19110413 |
|
( 李哲伟, 王骞阅, 蒲敏, 杨作银, 雷鸣, 化学学报, 2020, 78, 437.)
doi: 10.6023/A19110413 |
|
(d) Bahrami, K.; Bakhtiarian, M. ChemistrySelect 2018, 3, 10875.
doi: 10.1002/slct.201801782 |
|
(e) Liu, P.; Tung, N. T.; Xu, X.; Yang, J.; Feng, L. J. Org. Chem. 2021, 86, 2621.
doi: 10.1021/acs.joc.0c02685 |
|
(f) Shebitha, A. M.; Shaibuna, M.; Hiba, K.; Sreekuma, K. Catal. Lett. 2022, 152, 3017.
doi: 10.1007/s10562-021-03895-z |
|
(g) Inamdar, S. M.; More, V. K.; Mandal, S. K. Tetrahedron Lett. 2013, 54, 579.
doi: 10.1016/j.tetlet.2012.11.091 |
|
(h) Hikawa, H.; Nakayama, T.; Takahashi, M.; Kikkawa, S.; Azumaya, I. Adv. Synth. Catal. 2021, 363, 4075.
doi: 10.1002/adsc.v363.16 |
|
(i) Ma, C.; Huang, Y.; Zhao, Y. ACS Catal. 2016, 6, 6408.
doi: 10.1021/acscatal.6b01845 |
|
[4] |
(a) Ferlin, F.; van der Hulst, M. K.; Santoro, S.; Lanari, D.; Vaccaro, L. Green Chem. 2019, 21, 5298.
doi: 10.1039/C9GC01641D pmid: 24705796 |
(b) Chen, R.; Jalili, Z.; Tayebee, R. RSC Adv. 2021, 11, 16359.
doi: 10.1039/D0RA10843J pmid: 24705796 |
|
(c) Safaei, E.; Alaji, Z.; Panahi, F.; Wojtczak, A.; Jagličić, J. Z. New J. Chem. 2018, 42, 7230.
doi: 10.1039/C8NJ00921J pmid: 24705796 |
|
(d) Hu, J.; Li, M.; Wan, J.; Sun, J.; Gao, H.; Zhang, F.; Zhang, Z. Org. Biomol. Chem. 2022, 20, 3413.
doi: 10.1039/D2OB90043B pmid: 24705796 |
|
(e) Khalafi-Nezhad, A.; Panahi, F. ACS Catal. 2014, 4, 1686.
doi: 10.1021/cs5000872 pmid: 24705796 |
|
(f) Jiang, H.; Zang, C.; Cheng, H.; Sun, B.; Gao, X. Catal. Sci. Technol. 2021, 11, 7955.
doi: 10.1039/D1CY01623G pmid: 24705796 |
|
(g) Doan, S. H.; Tran, C. B.; Cao, An, L. N.; Le, N. T. H.; Phan, N. T. S. Catal. Lett. 2019, 149, 2053.
doi: 10.1007/s10562-019-02747-1 pmid: 24705796 |
|
[1] |
(a) Demmer, C. S.; Bunch, L. Eur. J. Med. Chem. 2015, 97, 778.
doi: 10.1016/j.ejmech.2014.11.064 |
(b) Jiang, B.; Shi, S. Chin. J. Org. Chem. 2022, 42, 3263. (in Chinese)
doi: 10.6023/cjoc202207002 |
|
( 蒋滨阳, 施世良, 有机化学, 2022, 42, 3263.)
doi: 10.6023/cjoc202207002 |
|
(c) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
doi: 10.1021/cr020033s |
|
(d) Li, J.; Liu, H.; Zhang, B.; Ge, B.; Wang, D. Chin. J. Org. Chem. 2022, 42, 619. (in Chinese)
doi: 10.6023/cjoc202108026 |
|
( 李家豪, 刘洪强, 张博, 葛冰洋, 王大伟, 有机化学, 2022, 42, 619.)
doi: 10.6023/cjoc202108026 |
|
(e) Asensio, J. A.; Sánchez, E. M.; Gomez-Romero, P. Chem. Soc. Rev. 2010, 39, 3210.
doi: 10.1039/b922650h |
|
(f) Zhao, J.; Jin, Z.; Wang, R.; Zhang, X.; Han, Y.; Hu, C.; Liu, X.; Zhang, C.; Jin, L. Chin. J. Org. Chem. 2022, 42, 2172. (in Chinese)
doi: 10.6023/cjoc202201002 |
|
( 赵静, 金辄, 王润, 张新庚, 韩英妹, 胡春, 刘晓平, 张传明, 金丽萍, 有机化学, 2022, 42, 2172.)
doi: 10.6023/cjoc202201002 |
|
(g) Shi, Y. M.; Crames, J. J.; Czech, L.; Bozhüyük, K. A. J.; Shi, Y. N.; Hirschmann, M.; Lamberth, S.; Claus, P.; Paczia, N.; Rückert, C.; Kalinowski, J.; Bange, G.; Bode, H. B. Angew. Chem., Int. Ed. 2022, 134, e202206106.
doi: 10.1002/ange.v134.51 |
|
(h) Tan, Z.; Jiang, H.; Zhang, M. Chem. Commun. 2016, 52, 9359.
doi: 10.1039/C6CC03996K |
|
(i) Yadav, G.; Ganguly, S. Eur. J. Med. Chem. 2015, 97, 419.
doi: 10.1016/j.ejmech.2014.11.053 |
|
(j) Hikawa, H.; Ichinose, R.; Kikkawa, S.; Azumaya, I. Green Chem. 2018, 20, 1297.
doi: 10.1039/C7GC03780E |
|
[2] |
(a) Saranya, T. V.; Sruthi, P. R.; Raj, V.; Anas, S. J. Organomet. Chem. 2021, 937, 121733.
doi: 10.1016/j.jorganchem.2021.121733 pmid: 30943366 |
(b) Mishra, N.; Singh, A. S.; Agrahari, A. K.; Singh, S. K.; Singh, M.; Tiwari, V. K. ACS Comb. Sci. 2019, 21, 389.
doi: 10.1021/acscombsci.9b00004 pmid: 30943366 |
|
(c) Urzúa, J. I.; Contreras, R.; Salas, C. O.; Tapia, R. A. RSC Adv. 2016, 6, 82401.
doi: 10.1039/C6RA18510J pmid: 30943366 |
|
(d) Zhao, M.; Yang, Z.; Yang, D. Chin. J. Org. Chem. 2022, 42, 111. (in Chinese)
doi: 10.6023/cjoc202107014 pmid: 30943366 |
|
( 赵咪娜, 杨梓墨, 杨得锁, 有机化学, 2022, 42, 111.)
doi: 10.6023/cjoc202107014 pmid: 30943366 |
|
(e) Hajipour, A. R.; Khorsandi, Z. A. New J. Chem. 2016, 40, 10474.
doi: 10.1039/C6NJ02293F pmid: 30943366 |
|
(f) Hao, S.; Yang, J.; Liu, P.; Xu, J., Yang, C.; Li, F. Org. Lett. 2021, 23, 2553.
doi: 10.1021/acs.orglett.1c00475 pmid: 30943366 |
|
(g) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296. (in Chinese)
doi: 10.6023/cjoc201805019 pmid: 30943366 |
|
( 胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
doi: 10.6023/cjoc201805019 pmid: 30943366 |
|
(h) Saha, P.; Ramana, T.; Purkait, N.; Ashif, M. A.; Pau, R.; Punniyamurth, T. J. Org. Chem. 2009, 74, 8719.
doi: 10.1021/jo901813g pmid: 30943366 |
|
(i) Tang, Y.; Li, M.; Gao, H.; Rao, G.; Mao, Z. RSC Adv. 2020, 10, 14317.
doi: 10.1039/D0RA00570C pmid: 30943366 |
|
[4] |
(h) Feng, X.; Xu, C.; Wang, Z.; Tang, S.; Fu, W.; Ji, B.; Wang, L. Inorg. Chem. 2015, 54, 2088.
doi: 10.1021/ic502884z pmid: 24705796 |
(i) Yu, J.; Shen, M.; Lu, M. J. Iran. Chem. Soc. 2015, 12, 771.
doi: 10.1007/s13738-014-0537-0 pmid: 24705796 |
|
(j) Prakash, G.; Ramachandran, R.; Nirmala, M.; Viswanathamurthi, P.; Linert, W. Monatsh. Chem. 2014, 145, 1903.
doi: 10.1007/s00706-014-1300-z pmid: 24705796 |
|
(k) Narang, U.; Yadav, K. K.; Bhattacharya, S.; Chauhan, S. M. S. ChemistrySelect 2017, 2, 7135.
doi: 10.1002/slct.201701559 pmid: 24705796 |
|
(l) Li, J.; Liu, H.; Zhu, H.; Yao, W.; Wang, D. ChemCatChem 2021, 13, 4751.
doi: 10.1002/cctc.v13.22 pmid: 24705796 |
|
(m) Yu, J.; Xu, J.; Lu, M. Appl. Organomet. Chem. 2013, 27, 606.
pmid: 24705796 |
|
(n) Endo, Y.; Bäckvall, J. E. Chem.-Eur. J. 2012, 18, 13609.
doi: 10.1002/chem.201202187 pmid: 24705796 |
|
(o) Li, J.; Yang, Y.; Hu, W.; Xia, X.; Wang, D. Chin. J. Org. Chem. 2022, 42, 190. (in Chinese)
doi: 10.6023/cjoc202107018 pmid: 24705796 |
|
( 李家豪, 杨义科, 胡文康, 夏晓峰, 王大伟, 有机化学, 2022, 42, 190.)
doi: 10.6023/cjoc202107018 pmid: 24705796 |
|
(p) Yu, H.; Wada, K.; Fukutake, T.; Feng, Q.; Uemura, S.; Isoda, K.; Hirai, T.; Iwamoto, S. Catal. Today 2021, 375, 410.
doi: 10.1016/j.cattod.2020.02.014 pmid: 24705796 |
|
(q) Ramachandran, R.; Prakash, G.; Selvamurugan, S.; Viswanathamurthi, P.; Malecki, J. G.; Ramkumar, V. Dalton Trans. 2014, 43, 7889.
doi: 10.1039/c4dt00006d pmid: 24705796 |
|
(r) Lai, Y. L.; Ye, J. S.; Huang, J. M. Chem.-Eur. J. 2016, 22, 5425.
doi: 10.1002/chem.201505074 pmid: 24705796 |
|
[5] |
(a) Cao, F.; Duan, Z.; Zhu, H.; Wang, D. Mol. Catal. 2021, 503, 111391.
pmid: 34612344 |
(b) Khalili, D.; Banazadeh, A. R. Bull. Chem. Soc. Jpn. 2015, 88, 1693.
doi: 10.1246/bcsj.20150232 pmid: 34612344 |
|
(c) Bains, A. K.; Dey, D.; Yadav, S.; Kundu, A.; Adhikari, D. Catal. Sci. Technol. 2020, 10, 6495.
doi: 10.1039/D0CY00748J pmid: 34612344 |
|
(d) Liu, X.; Kuang, C.; Su, C. Acta Chim. Sinica 2022, 80, 1135. (in Chinese)
doi: 10.6023/A22040147 pmid: 34612344 |
|
( 刘霞, 匡春香, 苏长会, 化学学报, 2022, 80, 1135.)
doi: 10.6023/A22040147 pmid: 34612344 |
|
(e) Chakraborty, G.; Mondal, R.; Guin, A. K.; Paul, N. D. Org. Biomol. Chem. 2021, 19, 7217.
doi: 10.1039/d1ob01154e pmid: 34612344 |
|
(f) Kaldhi, D.; Vodnala, N.; Gujjarappa, R.; Nayak, S.; Ravichandiran, V.; Gupta, S.; Hazra, C. K.; Malakar, C. C. Tetrahedron Lett. 2019, 60, 223.
doi: 10.1016/j.tetlet.2018.12.017 pmid: 34612344 |
|
(g) Li, J.; Mao, A.; Yao, W.; Zhu, H.; Wang, D. Green Chem. 2022, 24, 2602.
doi: 10.1039/D2GC00190J pmid: 34612344 |
|
(h) Samanta, P. K.; Ray, S.; Das, T.; Gage, S. H.; Nandi, M.; Richards, R. M.; Biswas, P. Microporous Mesoporous Mater. 2019, 284, 186.
doi: 10.1016/j.micromeso.2019.04.034 pmid: 34612344 |
|
(i) Guang, R.; Zhao, H.; Zhang, M. Org. Lett. 2022, 24, 3048.
doi: 10.1021/acs.orglett.2c01001 pmid: 34612344 |
|
(j) Wilfred, C. D.; Taylor, R. J. K. Synlett 2004, 1628.
pmid: 34612344 |
|
(k) Mohanty, A.; Roy, S. Tetrahedron Lett. 2016, 57, 2749.
doi: 10.1016/j.tetlet.2016.05.018 pmid: 34612344 |
|
(l) Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Catal. Lett. 2016, 146, 2139.
doi: 10.1007/s10562-016-1818-2 pmid: 34612344 |
|
(m) Xu, Z.; Yu, X.; Sang, X.; Wang, D. Green Chem. 2018, 20, 2571.
doi: 10.1039/C8GC00557E pmid: 34612344 |
|
[6] |
(a) Das, K.; Waiba, S.; Jana, A.; Maji, B. Chem. Soc. Rev. 2022, 51, 4396.
pmid: 36714055 |
(b) Borthakur, I.; Sau, A.; Kundu, S. Coordin. Chem. Rev. 2022, 451, 214257.
doi: 10.1016/j.ccr.2021.214257 pmid: 36714055 |
|
(c) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119, 2524.
doi: 10.1021/acs.chemrev.8b00306 pmid: 36714055 |
|
(d) Wei, D.; Darcel, C. Chem. Rev. 2019, 119, 2550.
doi: 10.1021/acs.chemrev.8b00372 pmid: 36714055 |
|
(e) Hey, D. A.; Reich, R. M.; Baratta, W.; Kühn, F. E. Chem. Rev. 2018, 374, 114.
pmid: 36714055 |
|
(f) Corma, A.; Navas, J.; Sabater, M J Chem. Rev. 2018, 119 1410.
pmid: 36714055 |
|
(g) Goyal, V.; Sarki, N.; Narani, A.; Naik, G.; Natte, K.; Jagadeesh, R. V. Coord. Chem. Rev. 2023, 474, 214827.
doi: 10.1016/j.ccr.2022.214827 pmid: 36714055 |
|
(h) Podyacheva, E.; Afanasyev, O. I.; Vasilyev, D. V.; Chusov, D. ACS Catal. 2022, 12, 7142.
doi: 10.1021/acscatal.2c01133 pmid: 36714055 |
|
(i) Tong, T.; Douthwaite, M.; Chen, L.; Engel, R.; Conway, M. B.; Guo, W.; Wu, X.; Gong, X.; Wang, Y.; Morgan, D. J.; Davies, T.; Kiely, C. J.; Chen, L.; Liu, X.; Hutchings, G. J. ACS Catal. 2023, 13, 1207.
doi: 10.1021/acscatal.2c04347 pmid: 36714055 |
|
(j) Wang, S.; Song, D.; Shen, F.; Chen, R.; Cheng, Y.; Zhao, C.; Shen, Q.; Yin, S.; Ling, F.; Zhong, W. Green Chem. 2023, 25, 357.
doi: 10.1039/D2GC03679G pmid: 36714055 |
|
(k) Jin, M. Y.; Zhou, Y.; Xiao, D.; You, Y.; Zhen, Q.; Tao, G.; Yu, P.; Xing, X. Angew. Chem., Int. Ed. 2022, 61, e202112993.
doi: 10.1002/anie.v61.3 pmid: 36714055 |
|
[7] |
Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G. Org. Lett. 2012, 14, 2722.
doi: 10.1021/ol300937z |
[8] |
Putta, R. R.; Chun, S.; Choi, S. H.; Lee, S. H.; Oh, D.; Hong, S. J. Org. Chem. 2020, 85, 15396.
doi: 10.1021/acs.joc.0c02191 |
[9] |
Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Chem. Commun. 2014, 50, 6145.
doi: 10.1039/c4cc01822b |
[10] |
(a) Sen, C.; Sahoo, T.; Galani, S. M.; Panda, A. B.; Ghosh, S. C. ChemistrySelect 2016, 1, 2542.
doi: 10.1002/slct.201600450 |
(b) Chaurasia, S. R.; Bhanage, B. M. ChemistrySelect 2018, 3, 7963.
doi: 10.1002/slct.v3.27 |
|
[11] |
(a) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939.
doi: 10.1126/science.1152516 pmid: 19292488 |
(b) Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 3875.
doi: 10.1021/ja809459e pmid: 19292488 |
|
(c) Chen, R.; Yao, J.; Gu, Q.; Smeets, S.; Baerlocher, C.; Gu, H.; Zhu, D.; Morris, W.; Yaghi, O. M.; Wang, H. Chem. Commun. 2013, 49, 95002.
pmid: 19292488 |
|
(d) Jia, H.; Xie, R.; Lu, G.; Jiang, H.; Zhang, M. ACS Catal. 2022, 12, 10294.
doi: 10.1021/acscatal.2c02573 pmid: 19292488 |
|
(e) Feng, Y.; Wang, H.; Yao, J. Coord. Chem. Rev. 2021, 431, 213677.
doi: 10.1016/j.ccr.2020.213677 pmid: 19292488 |
|
[12] |
(a) Zanon, A.; Verpoort, F. Coord. Chem. Rev. 2017, 353, 201.
doi: 10.1016/j.ccr.2017.09.030 |
(b) Cheng, N.; Ren, L.; Xu, X.; Du, Y.; Dou, S. X. Adv. Energy Mater. 2018, 8, 1801257.
doi: 10.1002/aenm.v8.25 |
|
(c) Duan, C.; Yu, Y.; Hu, H. Green Energy Environ. 2020, 29, 827.
|
|
[13] |
(a) Ma, D.; Li, B.; Shi, Z. Chin. Chem. Lett. 2018, 29, 827.
doi: 10.1016/j.cclet.2017.09.028 pmid: 33043331 |
(b) Qin, Y.; Li, Z.; Duan, Y.; Guo, J.; Zhao, M.; Tang, Z. Matter 2022, 5, 3260.
doi: 10.1016/j.matt.2022.07.014 pmid: 33043331 |
|
(c) Wang, Y.; Chen, L.; Hou, C. C.; Wei, Y. S.; Xu, Q. Org. Biomol. Chem. 2020, 18, 8508.
doi: 10.1039/d0ob01729a pmid: 33043331 |
|
[14] |
(a) Park, H.; Oh, S.; Lee, S.; Choi, S.; Oh, M. Appl. Catal., B 2019, 246, 322.
doi: 10.1016/j.apcatb.2019.01.083 |
(b) Zhang, C.; Yang, H.; Zhong, D.; Xu, Y.; Wang, Y.; Yuan, Q.; Liang, Z.; Wang, B.; Zhang, W.; Zheng, H.; Cheng, T.; Cao, R. J. Mater. Chem. A 2020, 8, 9536.
doi: 10.1039/D0TA00962H |
|
(c) Guo, F.; He, Y.; Zeng, H.; Liu, H.; Yang, D.; Chen, H.; Li, H.; Liu, Y. Colloids Surf., A 2022, 648, 129417.
doi: 10.1016/j.colsurfa.2022.129417 |
|
[15] |
Zhang, J.; Zhang, T.; Yu, D.; Xiao, K.; Hong, Y. CrystEngComm 2015, 17, 8212.
doi: 10.1039/C5CE01531F |
[16] |
Chen, M.; Peng, C.; Su, Y.; Chen, X.; Zhang, Y.; Wang, Y.; Peng, J. Angew. Chem., Int. Ed. 2020, 59, 20988.
doi: 10.1002/anie.v59.47 |
[17] |
Fu, H.; Wang, Z.; Wang, X.; Wang, P.; Wang, C. C. CrystEngComm 2018, 20, 1473.
doi: 10.1039/C7CE02073B |
[18] |
(a) Hao, Y.; Sani, L, A.; Ge, T.; Fang, Q. Appl. Surf. Sci. 2017, 419, 826.
doi: 10.1016/j.apsusc.2017.05.079 |
(b) Sun, X.; Xu, W.; Zhang, X.; Lei, T.; Lee, S. Y.; Wu, Q. J. Energy Chem. 2021, 52, 170.
doi: 10.1016/j.jechem.2020.04.057 |
|
(c) Ong, J. Y.; Ng, X. Q.; Lu, S.; Zhao, Y. Org. Lett. 2020, 22, 6447.
doi: 10.1021/acs.orglett.0c02266 |
|
(d) He, J.; Jiao, L.; Cheng, X.; Chen, G.; Wu, Q.; Wang, X.; Yang, L.; Hu, Z. Acta Chim. Sinica 2022, 80, 896. (in Chinese)
doi: 10.6023/A22030117 |
|
( 何家伟, 焦柳, 程雪怡, 陈光海, 吴强, 王喜章, 杨立军, 胡征, 化学学报, 2022, 80, 896.)
doi: 10.6023/A22030117 |
|
[19] |
(a) Sasikumar, B.; Arthanareeswaran, G. Appl. Surf. Sci. 2022, 606, 154900.
doi: 10.1016/j.apsusc.2022.154900 |
(b) Wang, D.; Hu, J.; Li, Y.; Fu, M.; Liu, D.; Chen, Q. J. Membr. Sci. 2016, 501, 228.
doi: 10.1016/j.memsci.2015.12.013 |
|
[20] |
(a) Zárate-Guzmán, A. I.; González-Gutiérrez, L. V.; Ocampo-Pérez, R.; Carrasco-Marín, F.; Romero-Cano, L. A. J. Water Process Eng. 2020, 36, 101273.
doi: 10.1016/j.jwpe.2020.101273 |
(b) Gao, X.; Cao, Z.; Li, C.; Liu, J.; Liu, X.; Guo, L. New J. Chem. 2022, 46, 18952.
doi: 10.1039/D2NJ03111F |
|
[21] |
Liu, H.; Wei, G.; Xu, Z.; Liu, P.; Li, Y. Appl. Surf. Sci. 2016, 389, 438.
doi: 10.1016/j.apsusc.2016.07.146 |
[22] |
(a) Quintard, A.; Rodriguez, J. Angew. Chem. Int. Ed. 2014, 53, 4044.
doi: 10.1002/anie.201310788 pmid: 31589464 |
(b) Yan, T.; Feringa, B. L.; Barta, K. Nat. Commun. 2014, 5, 5602.
doi: 10.1038/ncomms6602 pmid: 31589464 |
|
(c) Quintard, A.; Constantieux, T.; Rodriguez, J. Angew. Chem., Int. Ed. 2013, 52, 12883.
doi: 10.1002/anie.201307295 pmid: 31589464 |
|
(d) Pan, H. J.; Lin, Y.; Gao, T.; Lau, K. K.; Feng, W.; Yang, B.; Zhao, Y. Angew. Chem., Int. Ed. 2021, 133, 18747.
doi: 10.1002/ange.v133.34 pmid: 31589464 |
|
(e) Elangovan, S.; Sortais, J. B.; Beller, M.; Darcel, C. Angew. Chem., Int. Ed. 2015, 54, 14483.
doi: 10.1002/anie.v54.48 pmid: 31589464 |
|
(f) Polidano, K.; Allen, B. D. W.; Williams, J. M. J.; Morrill, L. C. ACS Catal. 2018, 8, 6440.
doi: 10.1021/acscatal.8b02158 pmid: 31589464 |
|
(g) Bettoni, L.; Gaillard, S.; Renaud, J. L. Org. Lett. 2020, 22, 2064.
doi: 10.1021/acs.orglett.0c00549 pmid: 31589464 |
|
(h) Chang, S.; Liu, H.; Shi, G.; Xia, X.; Wang, D.; Duan, Z. New J. Chem. 2022, 46, 15929.
doi: 10.1039/D2NJ01763F pmid: 31589464 |
|
(i) Bettoni, L.; Gaillard, S.; Renaud, J. L. Org. Lett. 2019, 21, 8404.
doi: 10.1021/acs.orglett.9b03171 pmid: 31589464 |
|
(j) Guo, N.; Zhu, S. Chin. J. Org. Chem. 2015, 35, 1383. (in Chinese)
pmid: 31589464 |
|
( 郭娜, 朱守非, 有机化学, 2015, 35, 1383.)
doi: 10.6023/cjoc201502032 pmid: 31589464 |
|
[23] |
(a) Singh, A. S.; Singh, M.; Mishra, N.; Mishra, S.; Agrahari, A. K.; Tiwari, V. K. ChemistrySelect 2017, 2, 154.
doi: 10.1002/slct.201601116 pmid: 22047037 |
(b) Mishra, N.; Singh, A. S.; Agrahari, A. K.; Singh, S. K.; Singh, M.; Tiwari, V. K. ACS Appl. Energy Mater. 2019, 21, 389.
pmid: 22047037 |
|
(c) Patra, A.; James, A.; Das, T. K.; Biju, A. T. J. Org. Chem. 2018, 83, 14820.
doi: 10.1021/acs.joc.8b02598 pmid: 22047037 |
|
(d) Meeniga, I.; Gokanapalli, A.; Peddiahgari, V. G. R. Sustainable Chem. Pharm. 2022, 30, 100874.
pmid: 22047037 |
|
(e) Boissarie, P. J.; Hamilton, Z. E.; Lang, S.; Murphy, J. A.; Suckling, C. J. Org. Lett. 2011, 13, 6256.
doi: 10.1021/ol202725y pmid: 22047037 |
|
(f) Leng, Y.; Yang, F.; Zhu, W.; Zou, D.; Wu, Y.; Cai, R. Tetrahedron 2011, 67, 6191.
doi: 10.1016/j.tet.2011.06.057 pmid: 22047037 |
[1] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[2] | Xu Liao, Zeyu Wang, Wufei Tang, Jinqing Lin. Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2699-2710. |
[3] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[4] | Rui Bai, Xujuan Liu, Wenyu Luo, Shanshan Liu, Linyu Jiao. Research Progress of Chan-Lam Coupling Reaction in Heterogeneous Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2342-2354. |
[5] | JIan Xiao, Zhiying Wu, Ziyi Chen, Pengfei Zhao. Tetraethylenepentamine Functionalized Phenolic Resin as Highly Active Acid-Base Bifunctional Catalyst for Knoevenagel Condensation Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1179-1187. |
[6] | Qiang Huang, Tingting Deng, Jiayun Zhu, Jun Li, Feifei Li. Study on the Green Synthesis of β-Hydroxy-1,2,3-triazoles Catalyzed by An Amino-Functionalized Graphene-Supported Ag-Cu Composites [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 534-542. |
[7] | Binyang Jiang, Shi-Liang Shi. Recent Progress in Upgrading of Alcohol and Amine via Asymmetric Dehydrogenative Coupling [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3263-3279. |
[8] | Yaoyao Zhang, Lijie Zhou, Biao Han, Weishuang Li, Bojie Li, Lei Zhu. Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 33-53. |
[9] | Xin Chen, Chunxia Chen, Jinsong Peng. Research Progress of Cellulose and Its Derivatives Supported Copper Catalyst Catalyzed Organic Reactions [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1319-1336. |
[10] | Yuxuan Chen, Qi Chen, Zhanhui Zhang. Application of Covalent Organic Framework Materials as Heterogeneous Ligands in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3826-3843. |
[11] | Feiyu Wang, Zhipeng Zhang, Fei Huang. Research Progress of O—H Insertion Reaction Based on Diazo Ester [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 144-157. |
[12] | Xu Zi-Yue, Luo Yi, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting. Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3777-3793. |
[13] | Ma Huifang, Li Wenbo, Ablajan Keyume. One-Pot Synthesis of Dihydro[1,2,4]triazolo[1,5-a]pyrimidines and Dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine Derivatives Catalyzed by Amberlyst-15 [J]. Chin. J. Org. Chem., 2019, 39(7): 1945-1952. |
[14] | Liu Tao, Qu Chuanhua, Xie Jin, Zhu Chengjian. Photoinduced Atom-Economical Iterative Hydrotrifluoromethylation of Terminal Alkynes and Remote C(sp3)-H Functionalization [J]. Chin. J. Org. Chem., 2019, 39(6): 1613-1622. |
[15] | Chen Xiaoling, Chen Jingwen, Bao Zongbi, Yang Qiwei, Yang Yiwen, Ren Qilong, Zhang Zhiguo. MIL-101(Cr)-SO3H Catalyzed Transfer Hydrogenation of 2-Substituted Quinoline Derivatives [J]. Chin. J. Org. Chem., 2019, 39(6): 1681-1687. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||