Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (8): 2591-2613.DOI: 10.6023/cjoc202302002 Previous Articles Next Articles
收稿日期:
2023-02-02
修回日期:
2023-03-13
发布日期:
2023-04-13
基金资助:
Jiaxia Pu, Xiaoying Jia, Lirong Han, Qinghan Li()
Received:
2023-02-02
Revised:
2023-03-13
Published:
2023-04-13
Contact:
*Supported by:
Share
Jiaxia Pu, Xiaoying Jia, Lirong Han, Qinghan Li. Research Progress of Visible Light Promoted C—N Bond Fracture to Construct C—C Bond[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2591-2613.
[1] |
(a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
doi: 10.1126/science.1161976 pmid: 28044096 |
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r pmid: 28044096 |
|
(c) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
doi: 10.1038/nchem.687 pmid: 28044096 |
|
(d) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
doi: 10.1126/science.1239176 pmid: 28044096 |
|
(e) Gan, Z. Y.; Li, G. Q.; Yang, X. B.; Yan, Q. L.; Xu, G. Y.; Li, G. Y.; Jiang, Y. Y.; Yang, D. S. Sci. China: Chem. 2020, 63, 1652.
pmid: 28044096 |
|
(f) Wang, L. L.; Zhang, M.; Zhang, Y. L.; Liu, Q. S.; Zhao, X. H.; Li, J. S.; Luo, Z. D.; Wei, W. Chin. Chem. Lett. 2020, 31, 67.
doi: 10.1016/j.cclet.2019.05.041 pmid: 28044096 |
|
(g) Johnson, M. W.; Hannoun, K. I.; Tan, Y.; Fu, G. C.; Peters, J. C. Chem. Sci. 2016, 7, 4091.
doi: 10.1039/C5SC04709A pmid: 28044096 |
|
(h) Jouffroy, M.; Kelly, C. B.; Molander, G. A. Org. Lett. 2016, 18, 876.
doi: 10.1021/acs.orglett.6b00208 pmid: 28044096 |
|
(i) Bell, J. D.; Murphy, J. A. Chem. Soc. Rev. 2021, 50, 9540.
doi: 10.1039/D1CS00311A pmid: 28044096 |
|
(j) He, S. Q.; Li, H. C.; Chen, X. L.; Krylovb, I. B.; Terent'ev, A. O.; Qu, L. B.; Yu, B. Chin. J. Org. Chem. 2021, 41, 4661. (in Chinese)
doi: 10.6023/cjoc202105041 pmid: 28044096 |
|
( 贺帅旗, 李昊聪, 陈晓岚, Igor, B. Krylov, Alexander, O. Terent'ev, 屈凌波, 於兵, 有机化学, 2021, 41, 4661.)
doi: 10.6023/cjoc202105041 pmid: 28044096 |
|
(k) Song, G. Y.; Xue, D. Chin. J. Org. Chem. 2022, 42, 2275. (in Chinese)
doi: 10.6023/cjoc202202018 pmid: 28044096 |
|
( 宋戈洋, 薛东, 有机化学, 2022, 42, 2275.)
doi: 10.6023/cjoc202202018 pmid: 28044096 |
|
(l) Yin, Y. L.; Zhao, X. W.; Jiang, Z. Y. Chin. J. Org. Chem. 2022, 42, 1609. (in Chinese)
doi: 10.6023/cjoc202201047 pmid: 28044096 |
|
( 尹艳丽, 赵筱薇, 江智勇, 有机化学, 2022, 42, 1609.)
doi: 10.6023/cjoc202201047 pmid: 28044096 |
|
[2] |
(a) Kong, Y. L.; Xu, W. X.; Liu, X. H.; Weng, J. Q. Chin. Chem. Lett. 2020, 31, 3245.
doi: 10.1016/j.cclet.2020.05.022 pmid: 33826352 |
(b) Guo, W.; Tao, K. L.; Tan, W.; Zhao, M. M.; Zhemh, L. Y.; Fan, X. L. Org. Chem. Front. 2019, 6, 2048.
doi: 10.1039/C8QO01353E pmid: 33826352 |
|
(c) Revathi, L.; Ravindar, L.; Fang, W. Y.; Rakesh, K. P.; Qin, H. L. Adv. Synth. Catal. 2018, 21, 4652.
pmid: 33826352 |
|
(d) Srivastava, V.; Singh, P. K.; Srivastava, A.; Singh, P. P. RSC Adv. 2020, 10, 20046.
doi: 10.1039/d0ra03086d pmid: 33826352 |
|
(e) Peng, S.; Lin, Y. W.; He, W. M. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
doi: 10.6023/cjoc202000006 pmid: 33826352 |
|
( 彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
doi: 10.6023/cjoc202000006 pmid: 33826352 |
|
(g) Sundaravelu, N.; Nandy, A.; Sekar, G. Org. Lett. 2021, 23, 3115.
doi: 10.1021/acs.orglett.1c00806 pmid: 33826352 |
|
(h) Bai, J.; Yan, S.; Zhang, Z.; Guo, Z.; Zhou, C. Y. Org. Lett. 2021, 23, 4843.
doi: 10.1021/acs.orglett.1c01571 pmid: 33826352 |
|
(i) Xu, Q.; Zhou, X. X.; Zhang, S.; Pan, L.; Liu, Q.; Li, Y. F. Org. Lett. 2021, 23, 4870.
doi: 10.1021/acs.orglett.1c01596 pmid: 33826352 |
|
(j) Wu, C. L.; Bian, Q. L.; Ding, T.; Tang, M. M.; Zhang, W. K.; Xu, Y. Q.; Liu, B. Y.; Xu, H.; Li, H. B.; Fu, H. ACS Catal. 2021, 11, 9561.
doi: 10.1021/acscatal.1c02272 pmid: 33826352 |
|
(k) Wang, X. Y.; Luo, N. C.; Wang, F. Chin. J. Chem. 2022, 40, 1492.
doi: 10.1002/cjoc.v40.12 pmid: 33826352 |
|
(l) Hu, J. Y.; Zhu, Z. Q.; Xie, Z. B.; Le, Z. G. Chin. J. Org. Chem. 2022, 42, 978. (in Chinese)
doi: 10.6023/cjoc202110020 pmid: 33826352 |
|
( 胡家榆, 祝志强, 谢宗波, 乐长高, 有机化学, 2022, 42, 978.)
doi: 10.6023/cjoc202110020 pmid: 33826352 |
|
(m) Gao, R. Y.; Zuo, L. L.; Wang, F.; Li, C. Y.; Jiang, H. J.; Li, P. H.; Wang, L. Chin. J. Org. Chem. 2022, 42, 1883. (in Chinese)
doi: 10.6023/cjoc202203006 pmid: 33826352 |
|
( 高润烨, 左玲玲, 王芳, 李传莹, 蒋华江, 李品华, 王磊, 有机化学, 2022, 42, 1883.)
doi: 10.6023/cjoc202203006 pmid: 33826352 |
|
[3] |
(a) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011, 40, 4893.
doi: 10.1039/c1cs15122c |
(b) Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845.
doi: 10.1039/C1CS15181A |
|
[4] |
(a) Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 280.
doi: 10.1021/ja3089422 |
(b) Wang, D. Y.; Kawahata, M.; Yang, Z. K.; Miyamoto, K.; Komagawa, S.; Yamaguchi, K.; Wang, C.; Uchiyama, M. Nat. Commun. 2016, 7, 12937.
doi: 10.1038/ncomms12937 |
|
(c) He, F.; Wang, Z. X. Tetrahedron 2017, 73, 4450.
doi: 10.1016/j.tet.2017.06.004 |
|
[5] |
Mo, F. Y.; Dong, G. B.; Zhang, Y.; Wang, J. B. Org. Biomol. Chem. 2013, 11, 1582.
doi: 10.1039/c3ob27366k |
[6] |
Saeki, T.; Son, E. C.; Tamao, K. Org. Lett. 2004, 6, 617.
doi: 10.1021/ol036436b |
[7] |
(a) Gemoets, H. P. L.; Kalvet, I.; Nyuchev, A. V. Chem. Sci. 2017, 8, 1046.
doi: 10.1039/c6sc02595a pmid: 29861968 |
(b) Dubey, A. V.; Kumar, A. V. RSC Adv. 2016, 6, 46864.
doi: 10.1039/C6RA03395D pmid: 29861968 |
|
(c) Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem. Sci. 2016, 7, 89.
doi: 10.1039/c5sc02583d pmid: 29861968 |
|
(d) Akram, M. O.; Mali, P. S.; Patil, N. T. Org. Lett. 2017, 19, 3075.
doi: 10.1021/acs.orglett.7b01148 pmid: 29861968 |
|
[8] |
(a) Xie, Y.; Xuan, J. Chin. J. Org. Chem. 2022, 42, 4247. (in Chinese)
doi: 10.6023/cjoc202207016 |
( 谢阳, 宣俊, 有机化学, 2022, 42, 4247.)
doi: 10.6023/cjoc202207016 |
|
(b) Li, S.; Zhou, L. Chin. J. Org. Chem. 2022, 42, 3944. (in Chinese)
doi: 10.6023/cjoc202206058 |
|
( 李森, 周磊, 有机化学, 2022, 42, 3944.)
doi: 10.6023/cjoc202206058 |
|
[9] |
(a) Felpin, F. X.; Sengupta, S. Chem. Soc. Rev. 2019, 48, 1150.
doi: 10.1039/C8CS00453F |
(b) Mo, F. Y.; Qiu, D.; Zhang, L.; Wang, J. B. Chem. Rev. 2021, 121, 5741.
doi: 10.1021/acs.chemrev.0c01030 |
|
[10] |
(a) Correia, J. T. M.; Fernandes, V. A.; Matsuo, B. T.; Delgado, J. A. C.; de Souza, W. C.; Paixão, M. W. Chem. Commun. 2020, 56, 503;
doi: 10.1039/C9CC08348K |
(b) Yousif, A. M.; Colarusso, S.; Colarusso, S.; Bianchi, E. Eur. J. Org. Chem. 2022, 2022, e202201274.
|
|
[11] |
Wang, Z. X.; Yang, B. Org. Biomol. Chem. 2020, 18, 1057.
doi: 10.1039/C9OB02667C |
[12] |
Liao, L. L.; Cao, G. M.; Ye, J. H.; Sun, G. Q.; Zhou, W. J.; Gui, Y. Y.; Yan, S. S.; Shen, G.; Yu, D. G. J. Am. Chem. Soc. 2018, 140, 17338.
doi: 10.1021/jacs.8b08792 pmid: 30518213 |
[13] |
Miao, M.; Liao, L. L.; Cao, G. M.; Zhou, W. J.; Yu, D. G. Sci. China: Chem. 2019, 62, 1519.
doi: 10.1007/s11425-018-9402-4 |
[14] |
Veatch, A. M.; Liu, S. B.; Alexanian, E. J. Angew. Chem., Int. Ed. 2022, 61, e202210772.
doi: 10.1002/anie.v61.50 |
[15] |
Annibaletto, J.; Jacob, C.; Theunissen, C. Org. Lett. 2022, 24, 4170.
doi: 10.1021/acs.orglett.2c01407 pmid: 35667038 |
[16] |
(a) Kim, S. H.; Rojas-Martin, J.; Dean Toste, F. Chem. Sci. 2016, 7, 85.
doi: 10.1039/C5SC03025K |
(b) Ouyang, X. H.; Cheng, J.; Li, J. H. Chem. Commun. 2018, 54, 8745.
doi: 10.1039/C8CC04526G |
|
(c) Akram, M. O.; Mali, P. S.; Patil, N. T. Org. Lett. 2017, 19, 3075.
doi: 10.1021/acs.orglett.7b01148 |
|
[17] |
Mayans, J. G.; Suppo, J. S.; Echavarren, A. M. Org. Lett. 2020, 22, 3045.
doi: 10.1021/acs.orglett.0c00799 pmid: 32243187 |
[18] |
Song, K. X.; Qin, X. Y.; Ma, Z. X.; Geng, F. Z.; Hao, W. J.; Tu, S. J.; Jiang, B. Org. Chem. Front. 2021, 8, 5681.
doi: 10.1039/D1QO00994J |
[19] |
Kumar, R.; Jain, V. K.; Jain, N. J. Org. Chem. 2022, 87, 11939.
doi: 10.1021/acs.joc.2c00607 |
[20] |
Dahiya, A.; Schoenebeck, F. ACS Catal. 2022, 12, 8048.
doi: 10.1021/acscatal.2c02179 |
[21] |
Chand, S.; Sharma, A. K.; Pandey, A. K.; Singh, K. N. Org. Lett. 2022, 24, 6423.
doi: 10.1021/acs.orglett.2c02509 |
[22] |
Pirovano, V.; Brambilla, E.; Fanciullacci, G.; Abbiati, G. Org. Biomol. Chem. 2022, 20, 8065.
doi: 10.1039/D2OB01371A |
[23] |
Mkrtchyan, S.; Iaroshenko, V. O. Chem. Commun. 2020, 56, 2606.
doi: 10.1039/C9CC09945J |
[24] |
Saritha, R.; Annes, S. B.; Ramesh, S. RSC Adv. 2021, 11, 14079.
doi: 10.1039/D1RA02372A |
[25] |
Moazzam, A.; Farid, S. M.; Khaleghi, N.; Alizadeh, N.; Mahdavi, M.; New J. Chem. 2022, 46, 10814.
doi: 10.1039/D1NJ06059G |
[26] |
Dey, D.; Kundu, A.; Roy, M.; Pal, S.; Adhikari, D. Catal. Sci. Technol. 2022, 12, 1934.
doi: 10.1039/D1CY02229F |
[27] |
Wan, Y. M.; Liu, Q. F.; Wu, H.; Zhang, Z. G.; Zhang, G. S. Org. Chem. Front. 2022, 9, 1634.
doi: 10.1039/D1QO01914G |
[28] |
Cao, Y. X.; Zhu, G.; Li, Y. Q.; Breton, N. L.; Gourlaouen, C.; Choua, S.; Boixel, J.; de Rouville, H. P. J.; Soulé, J. F. J. Am. Chem. Soc. 2022, 144, 5902.
doi: 10.1021/jacs.1c12961 |
[29] |
(a) Gao, Y.; Jiang, S. W.; Mao, N. D.; Xiang, H.; Duan, J. L.; Ye, X. Y.; Wang, L. W.; Ye, Y.; Xie, T. Top. Curr. Chem. 2022, 380, 25.
|
(b) Wang, J.; Hoerrner, M. E.; Watson, M. P.; Weix, D. J. Angew. Chem., Int. Ed. 2020, 59, 13484.
doi: 10.1002/anie.v59.32 |
|
[30] |
Schönbauer, D.; Sambiagio, C.; Noël, T.; Schnürch, M. Beilstein J. Org. Chem. 2020, 16, 809.
doi: 10.3762/bjoc.16.74 pmid: 32395184 |
[31] |
Huang, Y.; Jia, J.; Huang, Q. P.; Zhao, L.; Wang, P.; Gu, J. W.; He, C. Y. Chem. Commun. 2020, 56, 14247.
doi: 10.1039/D0CC05725H |
[32] |
Tao, M. L.; Wang, A. J.; Guo, P.; Li, W. P.; Zhao, L.; Tong, J.; Wang, H. Y.; Yu, Y. B.; He, C. Y. Adv. Synth. Catal. 2022, 364, 24.
doi: 10.1002/adsc.v364.1 |
[33] |
Sekino, T.; Sato, S.; Yoshino, T.; Kojima, M.; Matsunaga, S. Org. Lett. 2022, 24, 2120.
doi: 10.1021/acs.orglett.2c00319 |
[34] |
Ramesh, V.; Gangadhar, M.; Nanubolu, J. B.; Adiyala, P. R. J. Org. Chem. 2021, 86, 12908.
doi: 10.1021/acs.joc.1c01555 |
[35] |
Kishor, G.; Ramesh, V.; Rao, V. R.; Pabbaraja, S.; Adiyala, P. R. RSC Adv. 2022, 12, 12235.
doi: 10.1039/D2RA00753C |
[36] |
Singh, S.; Tripathi, K. N.; Singh, R. P. Org. Biomol. Chem. 2022, 20, 5716.
doi: 10.1039/D2OB00943A |
[37] |
(a) Arceo, E.; Jurberg, I. D.; lvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
doi: 10.1038/nchem.1727 |
(b) Guo, Q.; Wang, M.; Liu, H.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2018, 57, 4747.
doi: 10.1002/anie.v57.17 |
|
[38] |
Wang, C.; Qi, R. P.; Xue, H. X.; Shen, Y. X.; Chang, M.; Chen, Y. Q.; Wang, R.; Xu, Z. Q. Angew. Chem., Int. Ed. 2020, 59, 7461.
doi: 10.1002/anie.v59.19 |
[39] |
Laroche, B.; Tang, X. J.; Archer, G.; Sanza, R. D.; Melchiorre, P. Org. Lett. 2021, 23, 285.
doi: 10.1021/acs.orglett.0c03735 |
[40] |
Lübbesmeyer, M.; Mackay, E. G.; Raycroft, M. A. R.; Elfert, J.; Pratt, D. A.; Studer, A. J. Am. Chem. Soc. 2020, 142, 2609.
doi: 10.1021/jacs.9b12343 pmid: 31941267 |
[41] |
Lai, S. Z.; Yang, Y. M.; Xu, H.; Tang, Z. Y.; Luo, Z. Z. J. Org. Chem. 2020, 85, 15638.
doi: 10.1021/acs.joc.0c01928 |
[42] |
Yang, T.; Wei, Y.; Koh, M. J. ACS Catal. 2021, 11, 6519.
doi: 10.1021/acscatal.1c01416 |
[43] |
Wang, J. X.; Ge, W.; Xing, W. L.; Fu, M. C. J. Org. Chem. 2021, 86, 18224.
doi: 10.1021/acs.joc.1c02499 |
[44] |
Huang, Q. P.; Huang, Y.; Wang, A. J.; Zhao, L.; Jia, J.; Yu, Y. B.; Tong, J.; Gu, J. W.; He, C. Y. Org. Chem. Front. 2021, 8, 4438.
doi: 10.1039/D1QO00507C |
[45] |
Lu, Y.; Fang, C. Z.; Liu, Q.; Li, B. L.; Wang, Z. X.; Chen, X. Y. Org. Lett. 2021, 23, 5425.
doi: 10.1021/acs.orglett.1c01758 |
[46] |
Ferko, B.; Marčeková, M.; Detková, K. R.; Doháňošová, J.; Berkeš, D.; Jakubec, P. Org. Lett. 2021, 23, 8705.
doi: 10.1021/acs.orglett.1c03122 |
[47] |
Cai, Z. Q.; Gu, R.; Si, W. L.; Xiang, Y. B.; Sun, J. W.; Jiao, Y.; Zhang, X. Green Chem. 2022, 24, 6830.
doi: 10.1039/D2GC02266D |
[48] |
Yetra, S. R.; Schmitt, N.; Tambar, U. K. Chem. Sci. 2023, 14, 586.
doi: 10.1039/D2SC05654B |
[49] |
Zhang, C. S.; Bao, L.; Chen, K. Q.; Wang, Z. X.; Chen, X. Y. Org. Lett. 2021, 23, 1577.
doi: 10.1021/acs.orglett.0c04287 |
[50] |
Wang, J. X.; Wang, Y. T.; Zhang, H.; Fu, M. C. Org. Chem. Front. 2021, 8, 4466.
doi: 10.1039/D1QO00660F |
[51] |
Ashley, M. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 18310.
doi: 10.1021/jacs.0c08595 |
[52] |
(a) Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; Konig, B. Acc. Chem. Res. 2016, 49, 1566.
doi: 10.1021/acs.accounts.6b00229 |
(b) Babu, S. S.; Muthuraja, P.; Yadav, P.; Gopinath, P. Adv. Synth. Catal. 2021, 363, 1782.
doi: 10.1002/adsc.v363.7 |
[1] | Qinggang Mei, Qinghan Li. Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 398-408. |
[2] | Yanshuo Zhu, Hongyan Wang, Penghua Shu, Ke'na Zhang, Qilin Wang. Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 1-17. |
[3] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[4] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[5] | Xiaoying Jia, Jiaxia Pu, Lirong Han, Qinghan Li. Research Progress in the Synthesis of Benzo[d]pentamembered Heterocyclic Thioethers Containing Two Heteroatoms [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 18-40. |
[6] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[7] | Yingjie Liu, Gangqing Shi, Ge Chou, Xin Zhang, Dongxue Song, Ning Chen, Miao Yu, Ying Xu. Progress of α-Position Functionalization of Ethers under Photo/Electrocatalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2664-2681. |
[8] | Lingna Wang, Xiaoqing Liu, Gang Lin, Hongying Jin, Minjun Jiao, Xuefen Liu, Shuping Luo. Photocatalytic Activation of C(sp3)—H Bonds to Form C—S Bonds Catalyzed by (Oxybis(4,1-phenylene))bis(phenylmethanone) [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2848-2854. |
[9] | Yu Zhao, Kai Zhang, Yubin Bai, Yantu Zhang, Shihui Shi. A Metal-Free Photocatalytic Hydrosilylation of Alkenes Using Bromide Salt as a Hydrogen Atom Transfer Reagent [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2837-2847. |
[10] | Yaxin Liu, Yu Zhang, Shuping Luo. Design and Synthesis of Thermal Delayed Fluorescence (TADF) Photocatalyst and Its Photocatalytic Dehalogenation Performance [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2476-2483. |
[11] | Ning Chen, Chengdong Zhang, Peng Li, Ge Qiu, Yinjie Liu, Tianlei Zhang. Research Progress in Synthesis of Spirocyclic Compounds Driven by Photo/Electrochemistry [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2293-2303. |
[12] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[13] | Hongyu Hou, Yuanyuan Cheng, Bin Chen, Chenho Tung, Lizhu Wu. α-Acylation of Olefins via Photocatalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1012-1022. |
[14] | Shenhao Chen, Song Zou, Chanjuan Xi. Photocatalyzed 2∶2 Coupling of Styrene and BrCF2CO2Me: A Facile Synthesis of Bis-difluoroacetylated Hexestrol Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1157-1167. |
[15] | Zujia Lu, Jian Qin, Jinting Wu, Wenli Cao, Baolong Kuang, Jianguo Zhang. Advances in the Synthesis of Energetic Compounds Based on 1,2,3-Triazoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 526-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||