Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (12): 4057-4074.DOI: 10.6023/cjoc202305008 Previous Articles     Next Articles

REVIEWS

氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展

郝二军a,*(), 丁笑波a, 王珂新a, 周红昊a, 杨启亮a, 石磊a,b,*()   

  1. a 河南师范大学化学化工学院 抗病毒性传染病创新药物全国重点实验室 平原实验室 绿色化学介质与反应教育部重点实验室 精细化学品绿色制造河南省协同创新中心 河南新乡 453007
    b 大连理工大学化学学院 精细化工国家重点实验室 辽宁大连 116024
  • 收稿日期:2023-05-09 修回日期:2023-07-11 发布日期:2023-08-30
  • 基金资助:
    国家自然科学基金(22171036); 国家自然科学基金(22007028); 河南省自然科学基金(232300421126); 河南师范大学化学化工学院开放研究基金(2020YB03)

Recent Progress on [3+2] Ring-Expansion Reaction of Aziridines with Unsaturated Compounds

Erjun Haoa,*(), Xiaobo Dinga, Kexin Wanga, Honghao Zhoua, Qiliang Yanga, Lei Shia,b,*()   

  1. a State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007
    b State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024
  • Received:2023-05-09 Revised:2023-07-11 Published:2023-08-30
  • Contact: *E-mail: hej@htu.edu.cn; shilei17@dlut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22171036); National Natural Science Foundation of China(22007028); Natural Science Foundation of Henan Province(232300421126); Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University(2020YB03)

Due to their high ring strain, aziridines readily undergo ring-expansion reactions, reacting with various unsaturated compounds to form heterocyclic compounds. These heterocyclic compounds serve as important scaffolds for drugs, natural products, and bioactive molecules. Additionally, they are valuable organic intermediates with wide-ranging applications in medicine, agriculture, chemical engineering, organic synthesis, and related fields. In recent years, there has been a significant increase in the synthesis of heterocyclic compounds using aziridines as three-atom synthons, resulting in a rapid advancement of research in this area. This review aims to provide an overview of the most recent [3+2] ring-expansion reactions involving aziridines and unsaturated compounds, such as olefins, aldehydes, ketones, and nitriles, over the past decade. Furthermore, the prospect in this field is also discussed.

Key words: aziridine, heterocyclic compound, [3+2] ring-expansion reaction