Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (1): 41-53.DOI: 10.6023/cjoc202305030 Previous Articles     Next Articles

REVIEWS

高选择性硒代半胱氨酸荧光探针的构建策略及成像

张莹珍, 江丹丹, 李娟华, 王菁菁, 刘昆明*(), 刘晋彪*()   

  1. 江西理工大学化学化工学院 江西赣州 341000
  • 收稿日期:2023-05-24 修回日期:2023-07-11 发布日期:2023-09-21
  • 基金资助:
    江西省自然科学基金(20212BAB203013); 江西省教育厅科技项目(GJJ2200820); 大学生创新创业训练计划(202110407006)

Construction Strategy and Imaging of Highly Selective Selenocysteine Fluorescent Probes

Yingzhen Zhang, Dandan Jiang, Juanhua Li, Jingjing Wang, Kunming Liu(), Jinbiao Liu()   

  1. College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000
  • Received:2023-05-24 Revised:2023-07-11 Published:2023-09-21
  • Contact: *E-mail: liukunming@jxust.edu.cn; E-mail: liujinbiao@jxust.edu.cn
  • Supported by:
    Jiangxi Provincial Natural Science Foundation(20212BAB203013); Science and Technology Project of the Education Department of Jiangxi Province(GJJ2200820); National College Students’ Innovation and Entrepreneurship Training Program(202110407006)

Selenocysteine (Sec) is important in maintaining the functioning of living systems and its abnormal concentration will lead to a variety of physiological disorders. Fluorescent probes offer the advantages of high sensitivity, high spatial and temporal resolution, nondestructive and visual detection. However, the construction of highly selective selenocysteine probes for in vivo imaging is challenging due to the interference of biothiols. In recent years, various design strategies have been adopted to improve probe selectivity, accuracy and fluorescence properties. The research progress of Sec fluorescent probes in terms of design principles, performance characteristics and imaging applications based on the type of recognition mechanism is reviewed, and the challenges and development trends in this field are predicted.

Key words: selenocysteine, fluorescent probe, design strategies, selectivity, bioimaging