Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (2): 605-612.DOI: 10.6023/cjoc202308006 Previous Articles Next Articles
ARTICLES
收稿日期:
2023-08-07
修回日期:
2023-09-27
发布日期:
2023-10-23
基金资助:
Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang()
Received:
2023-08-07
Revised:
2023-09-27
Published:
2023-10-23
Contact:
E-mail: Supported by:
Share
Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide[J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612.
Entry | Photocat. | Solvent | Yieldb/% |
---|---|---|---|
1 | TPA-MPs | CH3CN | 95 |
2 | TPA-MPs | CH2Cl2 | 90 |
3 | TPA-MPs | MeOH | 91 |
4 | TPA-MPs | THF | 89 |
5c | TPA-MPs | CH3CN | NR-40 |
6d | TPA-MPs | CH3CN | 95 |
7 | — | CH3CN | Trace |
8e | TPA-MPs | CH3CN | Trace |
9f | TPA-MPs | CH3CN | Trace |
Entry | Photocat. | Solvent | Yieldb/% |
---|---|---|---|
1 | TPA-MPs | CH3CN | 95 |
2 | TPA-MPs | CH2Cl2 | 90 |
3 | TPA-MPs | MeOH | 91 |
4 | TPA-MPs | THF | 89 |
5c | TPA-MPs | CH3CN | NR-40 |
6d | TPA-MPs | CH3CN | 95 |
7 | — | CH3CN | Trace |
8e | TPA-MPs | CH3CN | Trace |
9f | TPA-MPs | CH3CN | Trace |
[1] |
(a) Liu, T.; Wang, Y.; Luo, X.; Li, J.; Reed, S. A.; Xiao, H.; Young, T. S.; Schultz, P. G. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5910.
doi: 10.1073/pnas.1605363113 pmid: 25181039 |
(b) Sevier, C. S.; Kaiser, C. A. Nat. Rev. Mol. Cell Biol. 2002, 3, 836.
pmid: 25181039 |
|
(c) Wommack, A. J.; Ziarek, J. J.; Tomaras, J.; Chileveru, H. R.; Zhang, Y.; Wagner, G.; Nolan, E. M. J. Am. Chem. Soc. 2014, 136, 13494.
doi: 10.1021/ja505957w pmid: 25181039 |
|
[2] |
Jiang, C.-S.; Müller, W. E. G.; Schröder, H. C.; Guo, Y.-W. Chem. Rev. 2012, 112, 2179.
doi: 10.1021/cr200173z |
[3] |
(a) Li, B.; Wever, W. J.; Walsh, C. T.; Bowers, A. A. Nat. Prod. Rep. 2014, 31, 905.
doi: 10.1039/c3np70106a pmid: 24835149 |
(b) Chan, A. N.; Shiver, L. S.; Wever, W. J.; Razvi, S. Z. A.; Traxler, M. F.; Li, B. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 2717.
doi: 10.1073/pnas.1612810114 pmid: 24835149 |
|
[4] |
Witt D. Synthesi. 2008, 16, 2491.
|
[5] |
Li, X.-B.; Li, Z.-J.; Gao, Y.-J.; Meng, Q.-Y.; Yu, S.; Weiss, R. G.; Tung, C.-H.; Wu, L.-Z. Angew. Chem.. Int. Ed. 2014, 53, 2085.
doi: 10.1002/anie.v53.8 |
[6] |
Scharf, D. H.; Groll, M.; Habel, A.; Heinekamp, T.; Hertweck, C.; Brakhage, A. A.; Huber, E. M. Angew. Chem.. Int. Ed. 2014, 53, 2221.
doi: 10.1002/anie.v53.8 |
[7] |
Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
doi: 10.1002/adsc.v346:8 |
[8] |
(a) Liu, Q.; Wu, L.-Z. Natl. Sci. Rev. 2017, 4, 35.
|
(b) Dai, X. J.; Xu, X. L.; Li, X. N. Chin. J. Org. Chem. 2013, 33, 2046 (in Chinese).
doi: 10.6023/cjoc201304026 |
|
(戴小军, 许孝良, 李小年, 有机化学. 2013, 33, 2046.)
doi: 10.6023/cjoc201304026 |
|
[9] |
Dethe, D. H.; Srivastava, A.; Dherange, B. D.; Kumar, B. V. Adv. Synth. Catal. 2018, 360, 3020.
doi: 10.1002/adsc.v360.16 |
[10] |
(a) Talla, A.; Driessen, B.; Straathof, N. J. W.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; Noël, T. Adv. Synth. Catal. 2015, 357, 2180.
doi: 10.1002/adsc.v357.10 |
(b) Spiliopoulou, N.; Kokotos, C. G. Green Chem. 2021, 23, 546.
doi: 10.1039/D0GC03818K |
|
[11] |
(a) Bottecchia, C.; Erdmann, N.; Tijssen, P. M. A.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; Noël, T. ChemSusChe. 2016, 9, 1781.
doi: 10.1002/cssc.v9.14 |
(b) Xu, H.; Shi, J.-L.; Lyu, S.; Lang, X. Chin. J. Catal. 2020, 41, 1468.
doi: 10.1016/S1872-2067(20)63640-3 |
|
[12] |
Wu, W.-B.; Wong, Y.-C.; Tan, Z.-K.; Wu, J. Catal. Sci. Technol. 2018, 8, 4257.
doi: 10.1039/C8CY01240G |
[13] |
Sha, Y.; Lin, X.-M.; Niklas, J.; Poluektov, O. G.; Diroll, B. T.; Lin, Y.; Wen, J.; Hood, Z. D.; Lei, A.; Shevchenko, E. V. J. Mater. Chem. . 2021, 9, 12690.
|
[14] |
Savateev, A.; Ghosh, I.; König, B.; Antonietti, M. Angew. Chem.. Int. Ed. 2018, 57, 15936.
doi: 10.1002/anie.v57.49 |
[15] |
Quan, Y.; Lan, G.; Fan, Y.; Shi, W.; You, E.; Lin, W. J. Am. Chem. Soc. 2020, 142, 1746.
doi: 10.1021/jacs.9b12593 |
[16] |
Wang W. Acta Chim. Sinic. 2015, 73, 461 (in Chinese).
doi: 10.6023/A1506E001 |
(王为, 化学学报 2015, 73, 461.)
doi: 10.6023/A1506E001 |
|
[17] |
Xu, Z. Y.; Luo, Y.; Wang, H.; Zhang, D. W.; Li, Z. T. Chin. J. Org. Chem. 2020, 40, 3777 (in Chinese).
doi: 10.6023/cjoc202003070 |
(徐子悦, 罗驿, 王辉, 张丹维, 黎占亭, 有机化学. 2020, 40, 3777.)
doi: 10.6023/cjoc202003070 |
|
[18] |
Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Angew. Chem.. Int. Ed. 2005, 44, 7053.
doi: 10.1002/anie.v44:43 |
[19] |
Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W.-H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.
doi: 10.1038/s41557-018-0141-5 |
[20] |
(a) Xing, R.; Liu, N.; Liu, Y.; Wu, H.; Jiang, Y.; Chen, L.; He, M.; Wu, P. Adv. Funct. Mater. 2007, 17, 2455.
doi: 10.1002/adfm.v17:14 |
(b) Liu, F.; Zuo, S.; Kong, W.; Qi, C. Green Chem. 2012, 14, 1342.
doi: 10.1039/c2gc16562g |
|
(c) Zhang, F.; Yang, X.; Jiang, L.; Liang, C.; Zhu, R.; Li, H. Green Chem. 2013, 15, 1665.
doi: 10.1039/c3gc40215k |
|
[21] |
(a) Zhang, F.; Liang, C.; Wu, X.; Li, H. Angew. Chem.. Int. Ed. 2014, 53, 8498.
doi: 10.1002/anie.v53.32 |
(b) Zhang, F.; Yang, X.; Zhu, F.; Huang, J.; He, W.; Wang, W.; Li, H. Chem. Sci. 2012, 3, 476.
doi: 10.1039/C1SC00689D |
|
[22] |
Zhang, W.; Mei, Y.; Huang, X.; Wu, P.; Wu, H.; He, M. ACS Appl. Mater. Interface. 2019, 11, 44241.
doi: 10.1021/acsami.9b14927 pmid: 31674181 |
[23] |
Liu, F.; Wu, Q.; Liu, C.; Qi, C.; Huang, K.; Zheng, A.; Dai, S. ChemSusChe. 2016, 9, 2496.
doi: 10.1002/cssc.v9.17 |
[24] |
(a) Yang, X.; Li, L.; Li, Y.; Zhang, Y. J. Org. Chem. 2016, 81, 12433.
doi: 10.1021/acs.joc.6b02683 pmid: 32281374 |
(b) Li, S.; Yang, X.; Wang, Y.; Zhou, H.; Zhang, B.; Huang, G.; Zhang, Y.; Li, Y. Adv. Synth. Catal. 2018, 360, 4452.
pmid: 32281374 |
|
(c) Zhang, Y.; Yang, X.; Zhou, H.; Li, S.; Zhu, Y.; Li, Y. Org. Chem. Front. 2018, 5, 2120.
doi: 10.1039/C8QO00341F pmid: 32281374 |
|
(d) Zhou, H.; Yang, X.; Li, S.; Zhu, Y.; Li, Y.; Zhang, Y. Org. Biomol. Chem. 2018, 16, 6728.
doi: 10.1039/C8OB01844H pmid: 32281374 |
|
(e) Wang, J.; Li, L.; Guo, Y.; Li, S.; Wang, S.; Li, Y.; Zhang, Y. Org. Biomol. Chem. 2020, 18, 8179.
doi: 10.1039/D0OB01837F pmid: 32281374 |
|
(f) Zhang, Y.; Li, S.; Zhu, Y.; Yang, X.; Zhou, H.; Li, Y. J. Org. Chem. 2020, 85, 6261.
doi: 10.1021/acs.joc.9b01440 pmid: 32281374 |
|
(g) Yang, X.; Zhu, Y.; Xie, Z.; Li, Y.; Zhang, Y. Org. Lett. 2020, 22, 1638.
doi: 10.1021/acs.orglett.0c00234 pmid: 32281374 |
|
(h) Yang, X.; Xie, Z.; Li, Y.; Zhang, Y. Chem. Sci. 2020, 11, 4741.
doi: 10.1039/D0SC00683A pmid: 32281374 |
|
(i) Wang, S.; Ye, Y.; Hu, Y.; Meng, X.; Liu, Z.; Liu, J.; Chen, K.; Zhang, Z.; Zhang, Y. Chem. Commun. 2023, 59, 2628.
doi: 10.1039/D2CC07071E pmid: 32281374 |
|
[25] |
(a) Lan, Y.; Yang, C.; Zhang, Y.; An, W.; Xue, H.; Ding, S.; Zhou, P.; Wang, W. Polym. Chem. 2019, 10, 3298.
doi: 10.1039/C9PY00326F |
(b) Guo, Y.; Wang, W. D.; Li, S.; Zhu, Y.; Wang, X.; Liu, X.; Zhang, Y. Chem Asian J. 2021, 16, 3689.
doi: 10.1002/asia.v16.22 |
|
[26] |
Zhu, Y.; Li, S.; Yang, X.; Wang, S.; Zhang, Y. J. Mater. Chem. . 2022, 10, 13978.
|
[27] |
Li, X.; Fan, J.; Cui, D.; Yan, H.; Shan, S.; Lu, Y.; Cheng, X.; Loh, T.-P. Eur. J. Org. Chem. 2022, e202200340.
|
[28] |
Wang, G.; Jia, J.; He, Y.; Wei, D.; Song, M.; Zhang, L.; Li, G.; Li, H.; Yuan, B. RSC Adv. 2022, 12, 18407.
doi: 10.1039/D2RA02255A |
[29] |
Bettanin, L.; Saba, S.; Galetto, F. Z.; Mike, G. A.; Rafique, J.; Braga, A. L. Tetrahedron Lett. 2017, 58, 4713.
doi: 10.1016/j.tetlet.2017.11.009 |
[30] |
Huo, S.; Shi, H.; Liu, D.; Shen, S.; Zhang, J.; Song, C.; Shi, T. J. Inorg. Biochem. 2013, 125, 9.
doi: 10.1016/j.jinorgbio.2013.04.003 |
[31] |
Bartoccini, F.; Retini, M.; Crinelli, R.; Menotta, M.; Fraternale, A.; Piersanti, G. J. Org. Chem. 2022, 87, 10073.
doi: 10.1021/acs.joc.2c01050 |
[32] |
Nguyen, N.-G. T.; Nguyen, X.-T.; Nguyen, N.-H.; Luu, T. X. T.; Dao, X.-T. J. Sulfur Chem. 2022, 43, 593.
doi: 10.1080/17415993.2022.2083914 |
[33] |
Song, M.; Hu, Q.; Li, Z.-Y.; Sun, X.; Yang, K. Chin. Chem. Lett. 2022, 33, 4269.
doi: 10.1016/j.cclet.2021.12.073 |
[34] |
Ren, M.-Z.; Fu, Y.-J.; Zhang, B.-S.; Quan, Z.-J.; Wang, X.-C. Synthesi. 2023, 55, 2011.
doi: 10.1055/s-0042-1751433 |
[35] |
Ma, Y.-T.; Lin, C.; Huang, X.-B.; Liu, M.-C.; Zhou, Y.-B.; Wu, H.-Y. Chem. Commun. 2022, 58, 6550.
doi: 10.1039/D2CC01344D |
[1] | Xu Liao, Zeyu Wang, Wufei Tang, Jinqing Lin. Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2699-2710. |
[2] | Shiguo Ou, Ruirui Chai, Jiahao Li, Dawei Wang, Xinxin Sang. Metal-Organic Framework Derived Phytate-Iron for Efficient Synthesis of 2-Arylbenzoxazole via Hydrogen Transfer Strategy [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2934-2945. |
[3] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[4] | Fei Cheng, Qiwen Sun, Jiangrong Lu, Xinglan Wang, Jiquan Zhang. Research Progress on the Construction of C—S Bond Using Aryl Disulfides as Radical Sulfur Reagents [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3728-3744. |
[5] | Rui Bai, Xujuan Liu, Wenyu Luo, Shanshan Liu, Linyu Jiao. Research Progress of Chan-Lam Coupling Reaction in Heterogeneous Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2342-2354. |
[6] | Yadong Li, Pengju Wu, Zhiyong Yang. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1770-1777. |
[7] | Tianyi Sun, Yifan Zhang, Yuanjie Meng, Yi Wang, Qifeng Zhu, Yuxin Jiang, Shihui Liu. Photoredox-Copper Dual-Catalyzed Site-Selective O-Alkylation of Glycosides [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1414-1422. |
[8] | Xin Sun, Chaofan Qu, Chaorui Ma, Xiaowei Zhao, Guobi Chai, Zhiyong Jiang. Photoredox Catalytic Cascade Radical Addition to Construct 1,4- Diketone-Functionalized Quinoxalin-2(1H)-one Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1396-1406. |
[9] | JIan Xiao, Zhiying Wu, Ziyi Chen, Pengfei Zhao. Tetraethylenepentamine Functionalized Phenolic Resin as Highly Active Acid-Base Bifunctional Catalyst for Knoevenagel Condensation Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1179-1187. |
[10] | Qiang Huang, Tingting Deng, Jiayun Zhu, Jun Li, Feifei Li. Study on the Green Synthesis of β-Hydroxy-1,2,3-triazoles Catalyzed by An Amino-Functionalized Graphene-Supported Ag-Cu Composites [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 534-542. |
[11] | Pan-Pan Gao, Wen-Jing Xiao, Jia-Rong Chen. Recent Progresses in Visible-Light-Driven Alkene Synthesis [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3923-3943. |
[12] | Qian Xiao, Qing-Xiao Tong, Jian-Ji Zhong. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3979-3994. |
[13] | Yang Xie, Jun Xuan. Photocatalytic Reactions Involving Diazo Compounds as Radical Precursors [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4247-4256. |
[14] | Yaoyao Zhang, Lijie Zhou, Biao Han, Weishuang Li, Bojie Li, Lei Zhu. Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 33-53. |
[15] | Lei Xu, Fang Wang, Fan Chen, Shengqing Zhu, Lingling Chu. Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||