Chinese Journal of Organic Chemistry Previous Articles     Next Articles

机器学习设计有机荧光诊疗分子的研究进展

郭浩哲a, 李玉银a, 汤培琛a, 樊江莉a,b,*   

  1. a大连理工大学精细化工国家重点实验室 辽宁 大连 116024;
    b大连理工大学宁波研究院 浙江 宁波 315016
  • 收稿日期:2025-05-20 修回日期:2025-06-05
  • 基金资助:
    本文受国家留学基金 (No.202406060052). 国家自然科学基金项目(22338005, 22494701); 辽宁滨海实验室基金(LBLB-2023-03); 中央高校基本科研业务费(DUT22LAB601); 宁波自然科学基金(2024Z218) 资助.

Advances in Machine Learning-Based Design of Organic Fluorescent Theranostic Molecules

Guo Haozhea, Li Yuyina, Tang Peichena, Fan Jianglia,b,*   

  1. aState Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China;
    bNingbo Institute of Dalian University of Technology, Ningbo 315016, China.
  • Received:2025-05-20 Revised:2025-06-05
  • Contact: *E-mail: fanjl@dlut.edu.cn
  • Supported by:
    China Scholarship Council (No.202406060052), National Natural Science Foundation of China (22338005, 22494701), Liaoning Binhai Laboratory (LBLB-2023-03), Fundamental Research Funds for the Central Universities (DUT22LAB601) and Natural Science Foundation of Ningbo Municipality:2024Z218.

Organic fluorescent theranostic molecules have been extensively applied in fields such as biomedical imaging and tumor therapy, attributed to their remarkable features including high sensitivity, excellent biocompatibility, low toxicity, and integrated diagnosis - treatment capabilities. However, as the demand for precision theranostics continues to escalate, traditional molecular design strategies—limited by time-consuming trial-and-error experimentation and prohibitive computational costs—have become insufficient to meet contemporary requirements. Machine learning (ML) has emerged as a revolutionary approach in fluorescent molecule design by directly establishing structure-property relationships, thereby improving the accuracy of theranostic functions and drastically reducing the design cycle. This review systematically collates and analyzes the fluorescent molecule design models based on diverse ML algorithms. It categorizes and comprehensively summarizes the current research by focusing on multiple characteristic attributes of theranostic molecules. Moreover, it puts forward the future development directions of molecular design based on ML methods.

Key words: Machine learning, Fluorescent theranostic molecules, Molecular design, Structure-activity relationship, Molecular descriptors, Database.