有机化学 ›› 2019, Vol. 39 ›› Issue (11): 3026-3039.DOI: 10.6023/cjoc201907051 上一篇 下一篇
所属专题: 碳氢活化合辑2018-2019
综述与进展
收稿日期:
2019-07-29
发布日期:
2019-10-09
通讯作者:
谢建伟
E-mail:cesxjw@foxmail.com
基金资助:
Xie Jianweiab*(), Wang Xiaochuangb, Wu Fengtianc, Zhang Jieb
Received:
2019-07-29
Published:
2019-10-09
Contact:
Xie Jianwei
E-mail:cesxjw@foxmail.com
Supported by:
文章分享
铜催化Ullmann型C-N偶联反应是高效专一构建C-N键最重要的方法之一.水作为绿色清洁溶剂被广泛用于各种有机反应.按照配体结构特点,对配体促进的水介质或纯水相中,铜催化C-N交叉偶联反应研究进展做了全面的归纳,配体类型包括二胺类、酰肼类、邻菲罗啉类、糖类、吡啶-N-氧化物类、喹啉类、肟类和salen等.另外,对于无配体条件下,水介质或纯水相中铜催化C-N偶联反应也进行了综述.
谢建伟, 汪小创, 吴丰田, 张洁. 配体促进的水介质/纯水中铜催化C-N交叉偶联反应研究进展[J]. 有机化学, 2019, 39(11): 3026-3039.
Xie Jianwei, Wang Xiaochuang, Wu Fengtian, Zhang Jie. Research Progress in Ligand-Assisted Copper-Catalyzed C-N Cross-Coupling Reaction in Aqueous Media or Pure Water[J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3026-3039.
[1] |
Evano G. Blanchard N. Toumi M. Chem. Rev. 2008 108 3054.
doi: 10.1021/cr8002505 |
[2] | (a) Hartwig, J. F. In Palladium-Catalyzed Amination of Aryl Halides and Related Reactions, Wiley, New York, 2002. |
(b) Jiang, L.; Buchwald, S. L. In Palladium-catalyzed Aromatic carbon-nitrogen Bond Formation in Metal-catalyzed Cross- coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004. | |
(c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954. | |
(d) Beletskaya, I. P.; Cheprakov, A. V. Organometallics 2012, 31, 7753. | |
[3] | Kosugi M. Kameyama M. Migita T. Chem. Lett. 1983 927. |
[4] | (a) Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174. |
(b) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382. | |
[5] |
Wolter M. Nordamann G. Job G. E. Buchwald S. L. Org. Lett. 2002 4 973.
doi: 10.1021/ol025548k |
[6] |
Nordamann G. Buchwald S. L. J. Am. Chem. Soc. 2003 125 4978.
doi: 10.1021/ja034809y |
[7] | (a) Dai, L. Prog. Chem. 2018, 30, 1257 (in Chinese). |
(戴立信, 化学进展, 2018, 30, 1257.) | |
(b) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525. | |
(c) Ribas, X.; Gueell, I. Pure Appl. Chem. 2014, 86, 345. | |
(d) Okano, K.; Tokuyama, H.; Fukuyama, T. Chem. Commun. 2014, 50, 13650. | |
(e) Li, Z.; Wu, Z.; Deng, H.; Zhou, X. Chin. J. Org. Chem. 2013, 33, 760 (in Chinese). | |
(李正凯, 吴之清, 邓杭, 周向葛, 有机化学, 2013, 33, 760.) | |
(f) Chen, Y.; Sun, L. Chin. J. Org. Chem. 2013, 33, 877 (in Chinese). | |
(成宜娟, 孙丽萍, 有机化学, 2013, 33, 877.) | |
(g) Bariwal, J.; Van der Eychen, E. Chem. Soc. Rev. 2013, 42, 9283. | |
(h) Wang, Y.; Zeng, J.; Cui, X. Chin. J. Org. Chem. 2010, 30, 181 (in Chinese). | |
(王晔峰, 曾京辉, 崔晓瑞, 有机化学, 2010, 30, 181.) | |
(i) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954. | |
(j) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096. | |
[8] |
Poliakoff M. Fitzpatrick J.-M. Farren T.-R. Anastas P. T. Science 2002 297 807.
doi: 10.1126/science.297.5582.807 |
[9] | Li, C.-J.; Chan, T.-H. In Comprehensive Organic Reactions in Aqueous Media, 2nd ed., John Wiley & Sons, New Jersey, 2007. |
[10] |
Carril M. SanMartin R. Domínguez E. Tellitu I. Green Chem. 2007 9 219.
doi: 10.1039/B614218D |
[11] |
Barbero N. Carril M. SanMartin R. Domínguez E. Tetrahedron 2008 64 7283.
doi: 10.1016/j.tet.2008.05.072 |
[12] |
Oshovsky G. V. Ouali A. Xia N. Zablocka M. Boeré R. T. Duhayon C. Taillefer M. Majoral J. P. Organometallics 2008 27 5733.
doi: 10.1021/om800728m |
[13] |
Swapna K. Murthy S. N. Nageswar Y. V. D. Eur. J. Org. Chem. 2010 2010 6678.
doi: 10.1002/ejoc.201000964 |
[14] |
Peng J. Ye M. Zong C. Hu F. Feng L. Wang X. Wang Y. Chen C. J. Org. Chem. 2011 76 716.
doi: 10.1021/jo1021426 |
[15] |
Malakar C. C. Baskakova A. Conrad J. Beifuss U. Chem.-Eur. J. 2012 18 8882.
doi: 10.1002/chem.201200583 |
[16] |
Shang X. Zhao S. Chen W. Chen C. Qiu H. Chem.-Eur. J. 2014 20 1825.
doi: 10.1002/chem.201303712 |
[17] |
Shao B. Du H. Hao X. Lu R. Luo Y. Zhang S. Chin. J. Chem. Eng. 2016 24 1000.
doi: 10.1016/j.cjche.2016.01.010 |
[18] |
Bollenbach M. Aquino P. G. V. de Araújo-Júnior J. X. Bourguignon J.-J. Bihel F. Salomé C. Wagner P. Schmitt M. Chem.- Eur. J. 2017 23 13676.
doi: 10.1002/chem.201700832 |
[19] |
Ding X. Bai J. Wang H. Zhao B. Li J. Ren F. Tetrahedron 2017 73 172.
doi: 10.1016/j.tet.2016.11.066 |
[20] | Zhu X. Ma Y. Su L. Song H. Chen G. Liang D. Wan Y. Synthesis 2006 3955. |
[21] |
Zhu X. H. Su L. Huang L. Chen G. Wang J. Song H. Wan Y. Eur. J. Org. Chem. 2009 2009 635.
doi: 10.1002/ejic.200801049 |
[22] |
Xie J. W. Zhu X. H. Huang M. N. Chen W. Wan Y. Eur. J. Org. Chem. 2010 2010 3219.
doi: 10.1002/ejoc.201000361 |
[23] |
Meng F. Zhu X. H. Li Y. Xie J. Wang B. Yao J. Wan Y. Eur. J. Org. Chem. 2010 2010 6149.
doi: 10.1002/ejoc.201001150 |
[24] |
Li Y. Zhu X. H. Meng F. Wan Y. Tetrahedron 2011 67 5450.
doi: 10.1016/j.tet.2011.05.068 |
[25] |
Huang M. Lin X. Zhu X. Peng W. Xie J. Wan Y. Eur. J. Org. Chem. 2011 2011 4523.
doi: 10.1002/ejoc.201100458 |
[26] |
Kurandina D. V. Eliseenkov E. V. Khaibulova T. S. Petrov A. A. Boyarskiy V. P. Tetrahedron 2015 71 7931.
doi: 10.1016/j.tet.2015.07.071 |
[27] |
Huang L. Yu R. Zhu X. Wan Y. Tetrahedron 2013 69 8974.
doi: 10.1016/j.tet.2013.07.036 |
[28] | Yang B. Mao Z. Zhu X. Wan Y. Catal. Commun. 2015 6 92. |
[29] |
Engel-Andreasen J. Shimpukade B. Ulven T. Green Chem. 2013 15 336.
doi: 10.1039/C2GC36589H |
[30] |
Xu H. Luo C. Li Z. Xiang H. Zhou X. J. Heterocycl. Chem. 2016 53 1207.
doi: 10.1002/jhet.2385 |
[31] |
Thakur K. G. Ganapathy D. Sekar G. Chem. Commun. 2011 47 5076.
doi: 10.1039/c1cc10568j |
[32] |
Thakur K. G. Srinivas K. S. Chiranjeevi K. Sekar G. Green Chem. 2011 13 2326.
doi: 10.1039/c1gc15469a |
[33] |
Huang M. Wang L. Zhu X. Mao Z. Kuang D. Wan Y. Eur. J. Org. Chem. 2012 2012 4897.
doi: 10.1002/ejoc.201200787 |
[34] |
Wen M. Shen C. Wang L. Zhang P. Jin J. RSC Adv. 2015 5 1522.
doi: 10.1039/C4RA11183D |
[35] |
Ge X. Chen X. Qian C. Zhou S. RSC Adv. 2016 6 29638.
doi: 10.1039/C6RA03015G |
[36] |
Ge X. Zhang S. Chen X. Liu X. Qian C. Green Chem. 2019 21 2771.
doi: 10.1039/C9GC00964G |
[37] | Zhou G. Chen W. Zhang S. Liu X. Yang Z. Ge X. Fan H.-J. Synlett 2019 193 |
[38] |
Liang L. Li Z. K. Zhou X. G. Org. Lett. 2009 11 3294.
doi: 10.1021/ol9010773 |
[39] |
Wang Y. Zhang Y. Yang B. Zhang A. Yao Q. Org. Biomol. Chem. 2015 13 4101.
doi: 10.1039/C5OB00045A |
[40] | Wang Y. Ling J. Zhang Y. Zhang A. Yao Q. Eur. J. Org. Chem. 2015 2015 4153. |
[41] |
Wu F.-T. Yan N.-N. Liu P. Xie J.-W. Liu Y. Dai B. Tetrahedron Lett. 2014 55 3249.
doi: 10.1016/j.tetlet.2014.04.039 |
[42] |
Wang X. Meng F. Zhang J. Xie J. Dai B. Catal. Lett. 2018 148 1142.
doi: 10.1007/s10562-018-2321-8 |
[43] |
Xie J.-W. Yao Z.-B. Wang X.-C. Zhang J. Tetrahedron 2019 75 3788.
doi: 10.1016/j.tet.2019.05.067 |
[44] |
Wang X. Zhang J. Xie J. Chem. J. Chin. Univ. 2017 38 1178.
doi: 10.7503/cjcu20170157 |
汪 小创 张 洁 谢 建伟 高等学校化学学报 2017 38 1178.
doi: 10.7503/cjcu20170157 |
|
[45] |
Karayannis N. M. Pytlewski L. L. Mikulski C. M. Coord. Chem. Rev. 1973 11 93.
doi: 10.1016/S0010-8545(00)82007-X |
[46] |
Yan N.-N. Wu F.-T. Zhang J. Wei Q.-B. Liu P. Xie J.-W. Dai B. Asian J. Org. Chem. 2014 3 1159.
doi: 10.1002/ajoc.201402136 |
[47] |
Liu L. Frohn M. Xi N. Dominguez C. Hungate R. Reider P. J. J. Org. Chem. 2005 70 10135.
doi: 10.1021/jo051640t |
[48] |
Zhang J. X. Yin H. Q. Han S. Q. Chin. J. Org. Chem. 2012 32 1429.
doi: 10.6023/cjoc201205018 |
张 敬先 殷 慧清 韩 世清 有机化学 2012 32 1429.
doi: 10.6023/cjoc201205018 |
|
[49] |
Li X. Yang D. Jiang Y. Fu H. Green Chem. 2010 12 1097.
doi: 10.1039/c002172e |
[50] |
Wu X. Hu W. Chin. J. Chem. 2011 29 2124.
doi: 10.1002/cjoc.201180368 |
[51] |
Wang D. Zhang F. Kuang D. Yu J. Li J. Green Chem. 2012 14 1268.
doi: 10.1039/c2gc35077g |
[52] |
Wang D. Kuang D. Zhang F. Yang C. Zhu X. Adv. Synth. Catal. 2015 357 714.
doi: 10.1002/adsc.201400785 |
[53] |
Wang D. Zheng Y. Yang M. Zhang F. Mao F. Yu J. Xia X. Org. Biomol. Chem. 2017 15 8009.
doi: 10.1039/C7OB02126G |
[54] |
Bollenbach M. Wagner P. Aquino P. G. V. Bourguignon J.-J. Bihel F. Salomé C. Schmitt M. ChemSusChem 2016 9 3244.
doi: 10.1002/cssc.201600801 |
[55] |
Sharma K. K. Mandloi M. Rai N. Jain R. RSC Adv. 2016 6 96762.
doi: 10.1039/C6RA23364C |
[56] |
Ferlin F. Trombettoni V. Luciani L. Fusi S. Piermatti O. Santoro S. Vaccaro L. Green Chem. 2018 20 1634.
doi: 10.1039/C8GC00287H |
[57] |
Kumar S. V. Ma D. Chin. J. Chem. 2018 36 1003.
doi: 10.1002/cjoc.201800326 |
[58] |
Zhou Q. Du F. Chen Y. Fu Y. Chen G. Tetrahedron Lett. 2019 60 1938.
doi: 10.1016/j.tetlet.2019.06.033 |
[59] |
Wang Y. Wu Z. Wang L. Li Z. Zhou X. Chem. Eur. J. 2009 15 8971.
doi: 10.1002/chem.200901232 |
[60] |
Wu Z. Jiang Z. Wu D. Xiang H. Zhou X. Eur. J. Org. Chem. 2010 2010 1854.
doi: 10.1002/ejoc.201000060 |
[61] |
Wu Z. Zhou L. Jiang Z. Wu D. Li Z. Zhou X. Eur. J. Org. Chem. 2010 2010 4971.
doi: 10.1002/ejoc.201000840 |
[62] |
Yu L. Zhou X. Wu D. Xiang H. J. Organomet. Chem. 2012 705 75.
doi: 10.1016/j.jorganchem.2011.12.030 |
[63] |
Pellón R. F. Carrasco R. Rodés L. Synth. Commun. 1993 23 1447.
doi: 10.1080/00397919308011235 |
[64] |
Röttger S. Sjöberg P. J. R. Larhed M. J. Comb. Chem. 2007 9 204.
doi: 10.1021/cc060150r |
[65] |
Xu H.-J. Zheng F.-Y. Liang Y.-F. Cai Z.-Y. Feng Y.-S. Che D.-Q. Tetrahedron Lett. 2010 51 669.
doi: 10.1016/j.tetlet.2009.11.104 |
[66] |
Mukhopadhyay C. Tapaswi P. K. Butcher R. J. Org. Biomol. Chem. 2010 8 4720.
doi: 10.1039/c0ob00177e |
[67] |
Xu H.-J. Liang Y.-F. Cai Z.-Y. Qi H.-X. Yang C.-Y. Feng Y.-S. J. Org. Chem. 2011 76 2296.
doi: 10.1021/jo102506x |
[68] |
Yong F.-F. Teo Y.-C. Tay S.-H. Tan B. Y.-H. Lim K.-H. Tetrahedron Lett. 2011 52 1161.
doi: 10.1016/j.tetlet.2011.01.005 |
[69] |
Yong F.-F. Teo Y.-C. Chua G.-L. Lim G. S. Lin Y. Tetrahedron Lett. 2011 52 1169.
doi: 10.1016/j.tetlet.2011.01.003 |
[70] |
Jiao J. Zhang X.-R. Chang N.-H. Wang J. Wei J.-F. Shi X.-Y. Chen Z.-G. J. Org. Chem. 2011 76 1180.
doi: 10.1021/jo102169t |
[71] |
Jin M. Zhao D. He G. Tong Y. Han S. Chin. J. Catal. 2013 34 1651.
doi: 10.1016/S1872-2067(12)60623-8 |
[72] |
Tan B. Y.-H. Teo Y.-C. Seow A.-H. Eur. J. Org. Chem. 2014 2014 1541.
doi: 10.1002/ejoc.201301561 |
[73] |
Heidarizadeh F. Majdi-nasab A. Tetrahedron Lett. 2015 56 6360.
doi: 10.1016/j.tetlet.2015.09.128 |
[74] |
Kumari S. Shakoor S. M. A. Bajaj K. Nanjegowda S. H. Mallu P. Sakhuja R. Tetrahedron Lett. 2016 57 2732.
doi: 10.1016/j.tetlet.2016.05.016 |
[75] |
Ge X. Chen X. Qian C. Zhou S. RSC Adv. 2016 6 58898.
doi: 10.1039/C6RA13536F |
[76] |
Pogula J. Laha S. Likhar P. R. Catal. Lett. 2017 147 2724.
doi: 10.1007/s10562-017-2166-6 |
[77] |
Albadi J. Jalali M. Samimi H. A. Catal. Lett. 2018 148 3750.
doi: 10.1007/s10562-018-2567-1 |
[78] |
Singh G. Kumar M. Bhalla V. Green Chem. 2018 20 5346.
doi: 10.1039/C8GC02527D |
[1] | 张亚辉, 刘洋, 缪建康, 郝文燕. 铜催化邻烯基芳基异硫氰酸酯与叠氮化钠串联双环化反应合成5H-苯并四氮唑并噻嗪化合物[J]. 有机化学, 2020, 40(8): 2426-2432. |
[2] | 武力左, 张峰源, 章振涛, 尚垒, 刘宇. Ming-Phos/铜催化的甲亚胺叶立德与三氟甲基烯酮的不对称[3+2]环加成反应[J]. 有机化学, 2020, 40(8): 2460-2467. |
[3] | 黄帅帅, 聂一雪, 杨晶晶, 郑战江, 曹建, 徐征, 徐利文. 铜催化二氟乙醇的芳基醚化反应及其机理研究[J]. 有机化学, 2020, 40(7): 2018-2025. |
[4] | 刘博瑜, 徐仙君, 黄立梁, 冯煌迪. 铜(I)催化丙炔酸、仲胺、醛和甲醛一锅法交叉偶联构建非对称1,4-二氨基丁炔[J]. 有机化学, 2020, 40(5): 1290-1296. |
[5] | 田万发, 李娜, 彭子赫, 冯丽华, 麦曦, 贺永勤. 配体促进的过渡金属催化芳烃远程meta-C—H键官能化反应研究进展[J]. 有机化学, 2020, 40(3): 625-644. |
[6] | 郎勃, Muhammad Suleman, 吕萍, 王彦广. 铜(I)促进的3-重氮吲哚-2-亚胺与AgSCF3的三氟甲硫基化反应:3-三氟甲硫基-2-氨基吲哚的合成[J]. 有机化学, 2020, 40(10): 3300-3306. |
[7] | 王才, 周锋, 周剑. 铜催化的不对称叠氮和炔烃的环加成反应的研究进展[J]. 有机化学, 2020, 40(10): 3065-3077. |
[8] | 兰天磊, 张越, 刘伟, 席婵娟, 陈超. 咔唑基高价碘试剂参与的活化芳烃直接咔唑化反应研究[J]. 有机化学, 2019, 39(8): 2166-2174. |
[9] | 任培星, 齐林, 方卓越, 吴天舒, 高雅蒙, 沈松, 宋金燕, 王力竞, 李玮. 铜催化β,γ-不饱和腙与二硫/硒化物的硫/硒胺基化反应:合成硫/硒化吡唑啉类化合物[J]. 有机化学, 2019, 39(6): 1776-1786. |
[10] | 王云龙, 张林宝, 牛俊龙, 宋毛平. N,O-双齿螯合作用下铜促进的C-H键直接硝基化反应[J]. 有机化学, 2019, 39(6): 1761-1766. |
[11] | 师晓楠, 田苗苗, 王慕华, 张新迎, 范学森. 由饱和酮与肼/醛腙的[3+2]/[2+3]环化反应区域选择性合成多取代吡唑[J]. 有机化学, 2019, 39(6): 1630-1641. |
[12] | 杨思琪, 李鑫, 彭卓金, 于文艳, 王光续, 靳雅兰, 郑冰冰, 代洪雪, 白大昌. 铜催化肟酯参与的[3+3]环加成反应合成4-五氟乙基取代的吡啶类化合物[J]. 有机化学, 2019, 39(6): 1623-1629. |
[13] | 张振雷, 钱朋, 查正根. 芳香磺酰肼与胺通过铜催化氧化偶联合成芳香磺酰胺[J]. 有机化学, 2019, 39(5): 1316-1322. |
[14] | 周安西, 周晓菲, 毛刘量, 郑大贵, 祝显虹, 陈宗保. 在含水介质中铜催化交叉氧化偶联反应合成β-酰基-α-氨基酸衍生物[J]. 有机化学, 2019, 39(4): 1070-1078. |
[15] | 段希焱, 刘宁, 王佳, 马军营. 铜催化下含氮化合物的Chan-Lam偶联反应的研究进展[J]. 有机化学, 2019, 39(3): 661-667. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||