有机化学 ›› 2023, Vol. 43 ›› Issue (3): 1091-1101.DOI: 10.6023/cjoc202211028 上一篇 下一篇
所属专题: 中国女科学家专辑
研究论文
收稿日期:
2022-11-24
修回日期:
2023-02-16
发布日期:
2023-02-27
通讯作者:
李燕, 张前
基金资助:
Chunyang Liua, Yan Lia(), Qian Zhanga,b()
Received:
2022-11-24
Revised:
2023-02-16
Published:
2023-02-27
Contact:
Yan Li, Qian Zhang
Supported by:
文章分享
发展了一种温和的铜催化烯丙位C(sp3)—H直接高效磺酰化方法, 以简单环状烯烃和亚磺酸钠为反应原料, 以中等至良好的收率合成了一系列烯丙基砜衍生物. 机理研究表明, 该反应可能经历了自由基中间体.
刘春阳, 李燕, 张前. 铜催化环状烯烃烯丙位C(sp3)—H磺酰化反应研究[J]. 有机化学, 2023, 43(3): 1091-1101.
Chunyang Liu, Yan Li, Qian Zhang. Copper-Catalyzed Allylic C(sp3)—H Sulfonylation of Cyclic Olefins[J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1091-1101.
Entry | Cu cat. | Ligand | Solvent | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | CuBr | L1 | DCM | 30 | 48 |
2 | CuBr | L2 | DCM | 30 | 42 |
3 | CuBr | L3 | DCM | 30 | 62 |
4 | CuBr | L4 | DCM | 30 | 75 |
5 | CuBr | L5 | DCM | 30 | 37 |
6 | CuBr | L6 | DCM | 30 | 51 |
7 | CuCl | L4 | DCM | 30 | 69 |
8 | CuOAc | L4 | DCM | 30 | 43 |
9 | CuI | L4 | DCM | 30 | 73 |
10 | Cu(CH3CN)4PF6 | L4 | DCM | 30 | 78 |
11 | Cu(CH3CN)4PF6 | L4 | DCE | 30 | 82 |
12 | Cu(CH3CN)4PF6 | L4 | THF | 30 | 0 |
13 | Cu(CH3CN)4PF6 | L4 | PhCF3 | 30 | 0 |
14 | Cu(CH3CN)4PF6 | L4 | CH3CN | 30 | 52 |
15 | Cu(CH3CN)4PF6 | L4 | DCE | 10 | 87 |
16 | Cu(CH3CN)4PF6 | L4 | DCE | 50 | 73 |
17 | None | L4 | DCE | 10 | 0 |
18b | Cu(CH3CN)4PF6 | L4 | DCE | 10 | 0 |
19 | Cu(CH3CN)4PF6 | None | DCE | 10 | 18 |
20c | Cu(CH3CN)4PF6 | L4 | DCE | 10 | 45 |
Entry | Cu cat. | Ligand | Solvent | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | CuBr | L1 | DCM | 30 | 48 |
2 | CuBr | L2 | DCM | 30 | 42 |
3 | CuBr | L3 | DCM | 30 | 62 |
4 | CuBr | L4 | DCM | 30 | 75 |
5 | CuBr | L5 | DCM | 30 | 37 |
6 | CuBr | L6 | DCM | 30 | 51 |
7 | CuCl | L4 | DCM | 30 | 69 |
8 | CuOAc | L4 | DCM | 30 | 43 |
9 | CuI | L4 | DCM | 30 | 73 |
10 | Cu(CH3CN)4PF6 | L4 | DCM | 30 | 78 |
11 | Cu(CH3CN)4PF6 | L4 | DCE | 30 | 82 |
12 | Cu(CH3CN)4PF6 | L4 | THF | 30 | 0 |
13 | Cu(CH3CN)4PF6 | L4 | PhCF3 | 30 | 0 |
14 | Cu(CH3CN)4PF6 | L4 | CH3CN | 30 | 52 |
15 | Cu(CH3CN)4PF6 | L4 | DCE | 10 | 87 |
16 | Cu(CH3CN)4PF6 | L4 | DCE | 50 | 73 |
17 | None | L4 | DCE | 10 | 0 |
18b | Cu(CH3CN)4PF6 | L4 | DCE | 10 | 0 |
19 | Cu(CH3CN)4PF6 | None | DCE | 10 | 18 |
20c | Cu(CH3CN)4PF6 | L4 | DCE | 10 | 45 |
[1] |
(a) Mishra, N. K.; Sharma, S.; Park, J.; Han, S.; Kim, I. S. ACS Catal. 2017, 7, 2821.
doi: 10.1021/acscatal.7b00159 pmid: 28451147 |
(b) Orcel, U.; Waser, J. Chem. Sci. 2017, 8, 32.
doi: 10.1039/c6sc04366f pmid: 28451147 |
|
(c) Koschker, P.; Breit, B. Acc. Chem. Res. 2016, 49, 1524.
doi: 10.1021/acs.accounts.6b00252 pmid: 28451147 |
|
(d) Kumar, D.; Vemula, S. R.; Balasubramanian, N.; Cook, G. R. Acc. Chem. Res. 2016, 49, 2169.
doi: 10.1021/acs.accounts.6b00362 pmid: 28451147 |
|
(e) Lu, Z.; Ma, S.-M. Angew. Chem., Int. Ed. 2008, 47, 258.
pmid: 28451147 |
|
[2] |
(a) Kazerouni, A. M.; McKoy, Q. A.; Blakey, S. B. Chem. Commun. 2020, 56, 13287.
doi: 10.1039/D0CC05554A |
(b) Manoharan, R.; Jeganmohan, M. Eur. J. Org. Chem. 2020, 7304.
|
|
[3] |
(a) Knecht, T.; Mondal, S.; Ye, J.-H.; Das, M.; Glorius, F. Angew. Chem., Int. Ed. 2019, 58, 7117.
doi: 10.1002/anie.v58.21 pmid: 24999765 |
(b) Qi, X. -X.; Chen, P. -H.; Liu, G.-S. Angew. Chem., Int. Ed. 2017, 56, 9517.
doi: 10.1002/anie.v56.32 pmid: 24999765 |
|
(c) Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176.
doi: 10.1021/ja506036q pmid: 24999765 |
|
(d) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316.
doi: 10.1021/ja710206u pmid: 24999765 |
|
(e) Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090.
doi: 10.1021/ja806867p pmid: 24999765 |
|
(f) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56.
doi: 10.1021/ja056541b pmid: 24999765 |
|
[4] |
Huang, H.-M.; Bellotti, P.; Glorius, F. Chem. Soc. Rev. 2020, 49, 6186.
doi: 10.1039/d0cs00262c pmid: 32756671 |
[5] |
(a) Ide, T.; Feng, K.; Dixon, C. F.; Teng, D. W.; Clark, J. R.; Han, W.; Wendell, C. I.; Koch, V.; White, M. C. J. Am. Chem. Soc. 2021, 143, 14969.
doi: 10.1021/jacs.1c06335 pmid: 30011106 |
(b) Liu, L.; Guo, K.-X.; Tian, Y.; Yang, C.-J.; Gu, Q.-S.; Li, Z.-L.; Ye, L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2021, 60, 26710.
doi: 10.1002/anie.v60.51 pmid: 30011106 |
|
(c) Ye, L.; Tian, Y.; Meng, X.; Gu, Q.-S.; Liu, X.-Y. Angew. Chem., Int. Ed. 2020, 59, 1129.
doi: 10.1002/anie.201911742 pmid: 30011106 |
|
(d) Li, J.-Y.; Zhang, Z.-H.; Wu, L.-Q.; Zhang, W.; Chen, P.-H.; Lin, Z.-Y.; Liu, G.-S. Nature 2019, 574, 516.
doi: 10.1038/s41586-019-1655-8 pmid: 30011106 |
|
(e) Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459.
doi: 10.1039/c8sc05677c pmid: 30011106 |
|
(f) Huang, L.; Rueping, M. Angew. Chem., Int. Ed. 2018, 57, 10333.
doi: 10.1002/anie.201805118 pmid: 30011106 |
|
(g) Gephart III, R. T.; Huang, D. L.; Aguila, M. J. B.; Schmidt, G.; Shahu, A.; Warren, T. H. Angew. Chem., Int. Ed. 2012, 51, 6488.
doi: 10.1002/anie.201201921 pmid: 30011106 |
|
(h) Andrus, M. B.; Zhou, Z.-N. J. Am. Chem. Soc. 2002, 124, 8806.
doi: 10.1021/ja026266i pmid: 30011106 |
|
[6] |
Huang, C.; Ci, R.-N.; Qiao, J.; Wang, X.-Z.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2021, 60, 11779
doi: 10.1002/anie.v60.21 |
[7] |
(a) Chen, X.; Hussain, S.; Parveen, S.; Zhang, S.; Yang, Y.; Zhu, C. Curr. Med. Chem. 2012, 19, 3578.
pmid: 22664250 |
(b) Back, T. G.; Clary, K. N.; Gao, D. Chem. Rev. 2010, 110, 4498.
doi: 10.1021/cr1000546 pmid: 22664250 |
|
(c) Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. J. Med. Chem. 2005, 48, 499.
doi: 10.1021/jm0400810 pmid: 22664250 |
|
[8] |
(a) Alba, A. R.; Companyo, X.; Rios, R. Chem. Soc. Rev. 2010, 39, 2018.
doi: 10.1039/b911852g pmid: 19438205 |
(b) Nielsen, M.; Jacobsen, C. B.; Holub, N.; Paixao, M. W.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2010, 49, 2668.
doi: 10.1002/anie.200906340 pmid: 19438205 |
|
(c) El-Awa, A.; NoShi, M. N.; Mollat du Jourdin, X.; Fuchs, P. L. Chem. Rev. 2009, 109, 2315.
doi: 10.1021/cr800309r pmid: 19438205 |
|
[9] |
(a) Salman, M.; Xu, Y.-Y.; Khan, S.; Zhang, J.-J.; Khan, A. Chem. Sci. 2020, 11, 5481.
doi: 10.1039/D0SC01763A pmid: 19588965 |
(b) Cai, A.; Kleij, A. W. Angew. Chem., Int. Ed. 2019, 58, 14944.
doi: 10.1002/anie.v58.42 pmid: 19588965 |
|
(c) Wang, T.-T.; Wang, F.-X.; Yang, F.-L.; Tian, S.-K. Chem. Commun. 2014, 50, 3802.
doi: 10.1039/c4cc00275j pmid: 19588965 |
|
(d) Wu, X.-S.; Chen, Y.; Li, M.-B.; Zhou, M.-G.; Tian, S.-K. J. Am. Chem. Soc. 2012, 134, 14694.
doi: 10.1021/ja306407x pmid: 19588965 |
|
(e) Jegelka, M.; Plietker, B. ChemCatChem 2012, 4, 329.
doi: 10.1002/cctc.v4.3 pmid: 19588965 |
|
(f) Ueda, M.; Hartwig, J. F. Org. Lett. 2010, 12, 92.
doi: 10.1021/ol9023248 pmid: 19588965 |
|
(g) Jegelka, M.; Plietker, B. Org. Lett. 2009, 11, 3462.
doi: 10.1021/ol901297s pmid: 19588965 |
|
(h) Trost, B. M.; Crawley, M. L.; Lee, C. B. J. Am. Chem. Soc. 2000, 122, 6120.
doi: 10.1021/ja000627h pmid: 19588965 |
|
(i) Trost, B. M.; Organ, M. G.; O'Doherty, G. A. J. Am. Chem. Soc. 1995, 117, 9662.
doi: 10.1021/ja00143a007 pmid: 19588965 |
|
[10] |
(a) Khakyzadeh, V.; Wang, Y.-H.; Breit, B. Chem. Commun. 2017, 53, 4966.
doi: 10.1039/C7CC02375H pmid: 25598017 |
(b) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed. 2015, 54, 15818.
doi: 10.1002/anie.201507623 pmid: 25598017 |
|
(c) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed. 2015, 54, 3121.
doi: 10.1002/anie.201411402 pmid: 25598017 |
|
(d) Xu, K.; Khakyzadeh, V.; Bury, T.; Breit, B. J. Am. Chem. Soc. 2014, 136, 16124.
doi: 10.1021/ja509383r pmid: 25598017 |
|
[11] |
Zhang, J.; Zhou, K.; Qiu, G.; Wu, J. Org. Chem. Front. 2019, 6, 36.
doi: 10.1039/c8qo01048j |
[12] |
(a) Long, J.; Shi, L.; Li, X.; Lv, H.; Zhang, X. Angew. Chem., Int. Ed. 2018, 57, 13248.
doi: 10.1002/anie.v57.40 |
(b) Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A.-W. Chem. Commun. 2016, 52, 10407.
doi: 10.1039/C6CC04109D |
|
(c) Mao, R.; Yuan, Z.; Zhang, R.; Ding, Y.; Fan, X.; Wu, J. Org. Chem. Front. 2016, 3, 1498.
doi: 10.1039/C6QO00350H |
|
(d) Li, J.; Qin, G.; Liu, Y.; Huang, H. Org. Chem. Front. 2016, 3, 259.
doi: 10.1039/C5QO00381D |
|
(e) Zhou, P.-X.; Ye, Y.-Y.; Zhao, L.-B.; Hou, J.-Y.; Kang, X.; Chen, D.-Q.; Tang, Q.; Zhang, J. Y.; Huang, Q.-X.; Zheng, L.; Ma, J.-W.; Xu, P.-F.; Liang, Y.-M. Chem.-Eur. J. 2014, 20, 16093.
doi: 10.1002/chem.v20.49 |
|
(f) Li, X.; Xu, X.; Zhou, C. Chem. Commun. 2012, 48, 12240.
doi: 10.1039/c2cc36960e |
|
[13] |
(a) Liu, C.-Y.; Shangguan, X.-Y.; Li, Y.; Zhang, Q. Chem. Sci. 2022, 13, 7886.
doi: 10.1039/D2SC00765G pmid: 27116936 |
(b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2021, 50, 8857.
doi: 10.1039/D1CS00208B pmid: 27116936 |
|
(c) Yang, S.-B.; Wang, L.-H.; Zhang, H.-W.; Liu, C.-Y.; Zhang, L.-L.; Wang, X.-M.; Zhang, G.; Li, Y.; Zhang, Q. ACS Catal. 2019, 9, 716.
doi: 10.1021/acscatal.8b03768 pmid: 27116936 |
|
(d) Yang, S.-B.; Li, Y.; Zhang, Q. Chin. J. Org. Chem. 2019, 39, 2226. (in Chinese)
doi: 10.6023/cjoc201903040 pmid: 27116936 |
|
(杨胜彪, 李燕, 张前, 有机化学, 2019, 39, 2226.)
doi: 10.6023/cjoc201903040 pmid: 27116936 |
|
(e) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.
doi: 10.1039/c5cs00852b pmid: 27116936 |
|
(f) Sun, J.-Q.; Zheng, G.-F.; Xiong, T.; Zhang, Q.; Zhao, J. B.; Li, Y.; Zhang, Q. ACS Catal. 2016, 6, 3674.
doi: 10.1021/acscatal.6b00759 pmid: 27116936 |
|
(g) Zheng, G.-F.; Li, Y.; Han, J.-J.; Xiong, T.; Zhang, Q. Nat. Commun. 2015, 6, 7011.
doi: 10.1038/ncomms8011 pmid: 27116936 |
|
(h) Zhang, H.-W.; Song, Y.-C.; Zhao, J.-B.; Zhang, J.-P.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079.
doi: 10.1002/anie.201406797 pmid: 27116936 |
|
(i) Zhang, H.-W.; Pu, W.-Y.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu, Q.; Zhang, Q. Angew. Chem., Int. Ed. 2013, 52, 2529.
doi: 10.1002/anie.v52.9 pmid: 27116936 |
|
(j) Ni, Z.-K.; Zhang, Q.; Xiong, T.; Zheng, Y.-Y.; Li, Y.; Zhang, H.-W.; Zhang, J.-P.; Liu, Q. Angew. Chem., Int. Ed. 2012, 51, 1244.
doi: 10.1002/anie.201107427 pmid: 27116936 |
|
[14] |
Zhang, Q.; Wang, S.-M.; Zhang, Q.; Xiong, T.; Zhang, Q. ACS Catal. 2022, 12, 527.
doi: 10.1021/acscatal.1c05073 |
[15] |
(a) Zhou, X.-S.; Cheng, Y.; Chen, J.; Yu, X.-Y.; Xiao, W.-J.; Chen, J.-R. ChemCatChem 2019, 11, 5300.
doi: 10.1002/cctc.v11.21 |
(b) He, J.-Y.; Chen, G.-L.; Zhang, B.-X.; Li, Y.; Chen, J.-R.; Xiao, W.-J.; Liu, F.; Li, C.-Z. Chem 2020, 6, 1149.
doi: 10.1016/j.chempr.2020.02.003 |
|
[16] |
(a) Jia, K.-F.; Zhang, F.-Y.; Huang, H.-C.; Chen, Y.-Y. J. Am. Chem. Soc. 2016, 138, 1514.
doi: 10.1021/jacs.5b13066 |
(b) Polák, P.; Tobrman, T. Eur. J. Org. Chem. 2019, 957.
|
[1] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[4] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[5] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[6] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[7] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[8] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[9] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[10] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[11] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[12] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[13] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[14] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
[15] | 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||