Chin. J. Org. Chem. ›› 2013, Vol. 33 ›› Issue (10): 2046-2062.DOI: 10.6023/cjoc201304026 Previous Articles Next Articles
Reviews
戴小军, 许孝良, 李小年
收稿日期:
2013-04-18
修回日期:
2013-05-09
发布日期:
2013-05-24
通讯作者:
许孝良, 李小年
E-mail:xuxiaoliang@zjut.edu.cn; xnli@zjut.edu.cn
基金资助:
国家重点基础研究发展计划(973计划, No. 2011CB710800)和浙江省自然科学基金(No. LY12B02017)资助项目
Dai Xiaojun, Xu Xiaoliang, Li Xiaonian
Received:
2013-04-18
Revised:
2013-05-09
Published:
2013-05-24
Supported by:
Project supported by the National Basic Research Program of China (973 Program, No. 2011CB710800) and the Zhejiang Provincial Natural Science Foundation of China (No. LY12B02017).
Share
Dai Xiaojun, Xu Xiaoliang, Li Xiaonian. Applications of Visible Light Photoredox Catalysis in Organic Synthesis[J]. Chin. J. Org. Chem., 2013, 33(10): 2046-2062.
[1] Ciamician, G. Science 1912, 36, 385.[2] Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785.[3] Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.[4] Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.[5] Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.[6] Shi, L.; Xia, W. J. Chem. Soc. Rev. 2012, 41, 7687.[7] You, Y.; Nam, W. Chem. Soc. Rev. 2012, 41, 7061.[8] Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.[9] Xi, Y. M.; Yi, H.; Lei, A. W. Org. Biomol. Chem. 2013, 11, 2387.[10] Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.[11] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.[12] Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875.[13] Shih, H. W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600.[14] Neumann, M.; Füldner, S.; König, B.; Zeitler, K. Angew. Chem., Int. Ed. 2011, 50, 951.[15] Pham, P. V.; Nagib, D. A.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2011, 50, 6119.[16] Cherevatskaya, M.; Neumann, M.; Füldner, S.; Harlander, C.; Kümmel, S,; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; König, B. Angew. Chem., Int. Ed. 2012, 51, 4062.[17] Koike, T.; Akita, M. Chem. Lett. 2009, 38, 166.[18] Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.[19] Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604.[20] Ischay, M. A.; Lu, X.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.[21] Du, J.; Espelt, L. R.; Guzei, I. A.; Yoon, T. P. Chem. Sci. 2011, 2, 2115.[22] Hurtley, A .E.; Cismesia, M. A.; Ischay, M. A.; Yoon, T. P. Tetrahedron 2011, 67, 4442.[23] Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162.[24] Maity, S.; Zhu, M.; Shinabery R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222.[25] Lin, S. S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350.[26] Tyson, E. L.; Farney, E. P.; Yoon, T. P. Org. Lett. 2012, 14, 1110.[27] Parrish, J. D.; Ischay, M. A.; Lu, Z.; Guo, S.; Peters, N. R.; Yoon, T. P. Org. Lett. 2012, 14, 1640.[28] Lin, S. S.; Padilla, C. E.; Ischay, M. A.; Yoon, T. P. Tetrahedron Lett. 2012, 53, 3073.[29] Zou, Y. Q.; Duan, S. W.; Meng, X. G.; Hu, X. Q.; Gao, S.; Chena, J. R.; Xiao, W. J. Tetrahedron 2012, 68, 6914.[30] Ischay, M. A.; Ament, M. S.; Yoon, T. P. Chem. Sci. 2012, 3, 2807.[31] Lu, Z.; Yoon, T. P. Angew. Chem. 2012, 124, 10475.[32] Deng, G. B. Wang, Z. Q.; Xia, J. D.; Qian, P. C.; Song, R. J.; Hu, M.; Gong, L. B.; Li, J. H. Angew. Chem., Int. Ed. 2013, 52, 1535.[33] Mashraqui, S. H.; Kellogg, R. M. Tetrahedron Lett. 1985, 26, 1453.[34] Fukuzumi, S.; Mochizuki, S.; Tanaka T. J. Phys. Chem. 1990, 94, 722.[35] Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.[36] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Org. Lett. 2011, 13, 2046.[37] Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.[38] Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 368.[39] Tucker, J. W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Chem. Commun. 2010, 46, 4985.[40] Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 3104.[41] Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem, Int. Ed. 2011, 50, 9655.[42] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.[43] Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2011, 13, 5468.[44] Ju, X. H.; Liang, Y.; Jia, P. J.; Li, W. F.; Yu, W. Org. Biomol. Chem. 2012, 10, 498.[45] Kim, H.; Lee, C. Angew. Chem., Int. Ed. 2012, 51, 12303.[46] Liu, Q.; Yi, H.; Liu, J.; Yang, Y. H.; Zhang, X.; Zeng, Z. Q.; Lei. A. W. Chem. Eur. J. 2013, 19, 5120.[47] Nguyen, J. D.; Tucker, J. W.; Konieczynska, M, D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.[48] Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. Chem. Eur. J. 2012, 18, 7336.[49] Wallentin, C. J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.[50] Maidan, R.; Goren, Z.; Becker, J. Y.; Willner, I. J. Am. Chem. Soc. 1984, 106, 6217.[51] Goren, Z.; Willner, I. J. Am. Chem. Soc. 1983, 105, 7764.[52] Maidan, R.; Willner, I. J. Am. Chem. Soc. 1986, 107, 1080.[53] Mandler, D.; Willner, I. J. Am. Chem. Soc. 1984, 106, 5352.[54] Willner, I.; Tsfania, T.; Eichen, Y. J. Org. Chem. 1990, 55, 2656.[55] Maji, Tapan.; Karmakar, Ananta.; Reiser, Oliver. J. Org. Chem. 2011, 76, 736.[56] Dai, C. H.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140.[57] Su, Y. J.; Zhang, L. R.; Jiao, N. Org. Lett. 2011, 13, 2168.[58] Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.[59] Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.[60] Rueping, M.; Zhu S. Q.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.[61] Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852.[62] Rueping, M.; Zhu, S. Q.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709.[63] Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94.[64] Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.; Weirich, T. E.; Mayer, J. Chem. Eur. J. 2012, 18, 3478.[65] Zhao, G. L.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. J. Chem. Commun. 2012, 48, 2337.[66] Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C. Chem. Eur. J. 2012, 18, 5170.[67] Xuan, J.; Cheng, Y.; An, J.; Lu, L. Q.; Zhang, X. X.; Xiao, W. J. Chem. Commun. 2011, 47, 8337.[68] Xuan, J.; Feng, Z. J.; Duan, S. W.; Xiao, W. J. RSC Adv. 2012, 2, 4065.[69] DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.[70] Dai, C. H.; Meschini, F.; Narayanam, J. M. R.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 4425.[71] Wang, Z. Q.; Hu, M.; Huang, X. C.; Gong, L. B. Xie, Y. X.; Li, J. H. J. Org. Chem. 2012, 77, 8705.[72] Zhu, S. Q.; Rueping, M. Chem. Commun. 2012, 48, 11960.[73] Pan, Y. H.; Wang, S. A.; Kee, C. W.; Dubuisson, E.; Yang, Y. Y.; Loh, K. P.; Tan. C. H. Green Chem. 2011, 13, 3341.[74] Fu, W. J.; Guo, W. B.; Zou, G. L.; Xu, C. J. Fluorine Chem. 2012, 140, 88.[75] Zou, Y. Q.; Lu, L. Q.; Fu, L.; Chang, N. J.; Rong, J.; Chen, J. R.; Xiao, W. J. Angew. Chem., Int. Ed. 2011, 50, 7171.[76] Rueping, M.; Leonori, D.; Poisson, T. Chem. Commun. 2011, 47, 9615.[77] Courant, T.; Masson, G. Chem. Eur. J. 2012, 18, 423.[78] Park, J. H.; Ko, K. C.; Kim, E.; Park, N.; Ko, J. H.; Ryu, D. H.; Ahn, T. K.; Lee, J. Y.; Son, S. U. Org. Lett. 2012, 14, 5502.[79] Cai, S. Y.; Zhao, X. Y.; Wang, X. B.; Liu, Q. S.; Li, Z. G.; Wang, D. Z. Angew. Chem. 2012, 124, 8174.[80] Jiang, H.; Huang, C. M.; Guo, J. J.; Zeng, C. Q.; Zhang, Y.; Yu, S. Y. Chem. Eur. J. 2012, 18, 15158.[81] Yoo, W.-J.; Tanoue, A.; Kobayashi, S. Chem. Asian J. 2012, 7, 2764.[82] Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2012, 48, 5355.[83] McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114.[84] Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14, 672.[85] Miyake, Y.; Nakajima, K.; Nishibayashi, Y. J. Am. Chem. Soc. 2012, 134, 3338.[86] Miyake, Y.; Ashida, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2012, 48, 6966.[87] Maity, S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562.[88] Ju, X. H.; Li, D. J.; Li, W. F.; Yu, W.; Bian, F. L. Adv. Synth. Catal. 2012, 354, 3561.[89] Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Eur. J. 2012, 18, 16473.[90] Zhu, S. Q.; Das, A.; Bui, L.; Zhou, H. J.; Curran, D. P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823.[91] Cano-Yelo, H.; Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984, 1093.[92] Hari, D. P.; Schroll, P.; König, B. J. Am. Chem. Soc. 2012, 134, 2958.[93] Schroll, P.; Hari, D. P.; König, B. ChemistryOpen 2012, 1, 130.[94] Hari, D. P.; Hering, T.; König, B. Org. Lett. 2012, 14, 5334.[95] Hering, T.; Hari, D. P.; König, B. J. Org. Chem. 2012, 77, 10347.[96] Chen, M.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2012, 48, 11686.[97] Cheng, Y. N.; Yang, J.; Qu, Y.; Li, P. Org. Lett. 2012, 14, 98.[98] Tyson, E. L.; Ament, M. S.; Yoon, T. P. J. Org. Chem. 2013, 78, 2046.[99] Borak, J. B.; Falvey, D. E. J. Org. Chem. 2009, 74, 3894.[100] Edson, J. B.; Spencer, L. P.; Boncella, J. M. Org. Lett. 2011, 13, 6156.[101] Hasegawa, E.; Takizawa, S.; Seida, T.; Yamaguchi, A.; Yamaguchi, N.; Chiba, N.; Takahashi, T.; Ikeda, H.; Akiyama, K. Tetrahedron 2006, 62, 6581.[102] Larraufie, M. H.; Pellet, R.; Fensterbank, L.; Goddard, J. P.; Lacôte, E.; Malacria, M.; Ollivier, C. Angew. Chem. 2011, 123, 4555.[103] Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.[104] Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. Tetrahedron Lett. 2012, 53, 2005.[105] Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034.[106] Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2013, 49, 2037.[107] Liu, Q.; Li, Y. N.; Zhang, H. H.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Org. Chem. 2011, 76, 1444.[108] Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 784.[109] Sun, H. N.; Yang, C.; Gao, F.; Li, Z.; Xia, W. J. Org. Lett. 2013, 15, 624.[110] Hirao, T.; Shiori, J.; Okahata, N. Bull. Chem. Soc. Jpn. 2004, 77, 1763.[111] Gazi, S.; Ananthakrishnan, R. Appl. Catal. B 2011, 105, 317.[112] Chen, Y. Y.; Kamlet, A. S.; Steinman, J. B.; Liu, D. R. Nat. Chem. 2011, 3, 146.[113] Zhao, G. L.; Yang, C.; Guo, L.; Sun, H. N.; Lin, R.; Xia, W. J. J. Org. Chem. 2012, 77, 6302.[114] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.[115] Bou-Hamdan, F. R.; Seeberger, P. H. Chem. Sci. 2012, 3, 1612.[116] Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2012, 51, 4144.[117] Nguyen, J. D.; Reiß, B.; Dai, C. H.; Stephenson, C. R. J. Chem. Commun. 2013, 49, 4352.[118] Neumann, M. Zeitler, K.; Org. Lett. 2012, 14, 2658. |
[1] | Xiao Liwei, Liu Guangxian, Li Zheng, Ren Ping, Ren Lilei, Kong Jie. Synthesis of N-Substituted Decahydroacridine-1,8-diones Promoted by Deep Eutectic Solvents [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2988-2993. |
[2] | Kong Yaolei, Sun Xiaotong, Weng Jianquan. Selectfluor as “Fluorine-Free” Functional Reagent Applied to Organic Synthesis under Transition Metal-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2641-2657. |
[3] | Zeng Hongyun, Zhang Jun'gan, Hong Wei. New Method for the Synthesis of 2,5-Diaryl Substituted Thiazoles [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2535-2542. |
[4] | Li Shengnan, Zhao Wenxin, Liu Yujing, Liu Zhongqiu, Ying Anguo. Research Progress in the Application of Supported Functional Ionic Liquids in Organic Transformations [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1835-1846. |
[5] | Xu Zi-Yue, Luo Yi, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting. Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3777-3793. |
[6] | Wang Xiangyang, Xu Xuetao, Wang Zhenhua, Fang Ping, Mei Tiansheng. Advances in Asymmetric Organotransition Metal-Catalyzed Electrochemistry [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3738-3747. |
[7] | Zhou Wenjun, Jiang Yuanxu, Chen Liang, Liu Kaixing, Yu Dagang. Visible-Light Photoredox and Palladium Dual Catalysis in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3697-3713. |
[8] | Yang Liu, Xu Guohe, Ma Jingjun, Yang Qian, Feng An, Cui Jinggang. Recent Advances in the Application of in-situ Generated Hypervalent Iodine Reagents in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2020, 40(1): 28-39. |
[9] | Xu Jing, Fan Weigang, Popowycz Florence, Queneau Yves, Gu Yanlong. Multicomponent Reactions: A New Strategy for Enriching the Routes of Value-Added Conversions of Bio-platform Molecules [J]. Chin. J. Org. Chem., 2019, 39(8): 2131-2138. |
[10] | Lai Shilin, Liao Xu, Zhang Hui, Jiang Yan, Liu Yuangang, Wang Shibin, Xiong Xingquan. Application of 3D Printing Technology in Organic Synthetic Chemistry [J]. Chin. J. Org. Chem., 2019, 39(7): 1858-1866. |
[11] | Ren Linjing, Ran Maogang, He Jiaxin, Qian Yan, Yao Qiuli. Recent Advance in the Transition-Metal Free Coupling Reactions for the Construction of C-X Bonds Induced by Light [J]. Chin. J. Org. Chem., 2019, 39(6): 1583-1595. |
[12] | Zhang Shuo, Zhao Ning, Li Qinggang, Zhang Jiaqi, Hou Zitong, Liu Yifan, Yu Yitao, Peng Dan, Wang Feng, Li Bing, Li Jinhui. Scandium(III)-Catalyzed Aza-Michael Addition of in Situ Generated ortho-Quinone Methides with Amines: An Efficient Access to Betti Base Derivatives [J]. Chin. J. Org. Chem., 2019, 39(3): 709-719. |
[13] | Xiao Liwei, Dai Fucai, Li Zheng, Jing Xuemin, Kong Jie, Liu Guangxian. Polyethylene Glycol: A New Medium for Green Organic Synthesis [J]. Chin. J. Org. Chem., 2019, 39(3): 648-660. |
[14] | Zhang Shuo, Peng Dan, Zhao Ning, Yu Yitao, Wang Feng, Liu Hailong, Yi Gang. Sc(OTf)3 Catalyzed Oxo-Michael Addition to o-Quinone Methides by Alcohols [J]. Chin. J. Org. Chem., 2019, 39(2): 555-560. |
[15] | Yue Huilan, Bao Pengli, Wang Leilei, Lü Xiaoxia, Yang Daoshan, Wang Hua, Wei Wei. Direct Synthesis Sulfonamides from Nitroarenes and Sulfonyl Chlorides in Water [J]. Chin. J. Org. Chem., 2019, 39(2): 463-468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||