Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (10): 3914-3934.DOI: 10.6023/cjoc202105052 Previous Articles Next Articles
REVIEWS
收稿日期:
2021-05-31
修回日期:
2021-06-19
发布日期:
2021-07-05
通讯作者:
何良年
基金资助:
Wenbin Huang, Liqi Qiu, Fangyu Ren, Liangnian He()
Received:
2021-05-31
Revised:
2021-06-19
Published:
2021-07-05
Contact:
Liangnian He
Supported by:
Share
Wenbin Huang, Liqi Qiu, Fangyu Ren, Liangnian He. Advances on Transition-Metal Catalyzed CO2 Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3914-3934.
Reaction equation | ΔGo/(kJ•mol–1) | ΔHo/(kJ•mol–1) | Eq. |
---|---|---|---|
CO2 (g)+H2 (g) → HCOOH (l) | +32.9 | –31.2 | (1) |
CO2 (g)+H2 (g)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –9.5 | –84.3 | (2) |
CO2 (aq)+H2 (aq)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –35.4 | –59.8 | (3) |
MHCO3 (aq)+H2 (aq) → HCO2M (aq)+H2O (l) | –0.7 | –20.5 | (4) |
Reaction equation | ΔGo/(kJ•mol–1) | ΔHo/(kJ•mol–1) | Eq. |
---|---|---|---|
CO2 (g)+H2 (g) → HCOOH (l) | +32.9 | –31.2 | (1) |
CO2 (g)+H2 (g)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –9.5 | –84.3 | (2) |
CO2 (aq)+H2 (aq)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –35.4 | –59.8 | (3) |
MHCO3 (aq)+H2 (aq) → HCO2M (aq)+H2O (l) | –0.7 | –20.5 | (4) |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/h–1 | Ref. | |
---|---|---|---|---|---|---|---|---|---|
[RuH2(PPh3)4] | C6H6/H2O | NEt3 | 2.5/2.5 | r.t. | 20 | 87 | 4 | [ | |
[RuH2(PMe3)4] | scCO2 | NEt3/H2O | 12/8.5 | 50 | 1 | 3700 | 1400 (initial) | [ | |
[RuH2(PMe3)4] | scCO2 | NHMe2 | 13/8 | 100 | 14 | 370000 | 26428 | [ | |
[RuCl2(dppe)2] | scCO2 | NHMe2 | 13/8.5 | 100 | 2.05 | 740000 | 360000 | [ | |
[RuCl(OAc)(PMe3)4] | scCO2 | NEt3/C6F5OH | 12/7 | 50 | 0.3 | 31200 | 95000 | [ | |
[(C6Me6)Ru(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 24 | 15400 | 640 | [ | |
[RuCl2(C6H6)]2/DPPM | H2O/THF | NaHCO3 | 0/5 | 70 | 2 | 1400 | 690 | [ | |
[(η6-p-Cymene)Ru(bis-NHC)Cl]PF6 | H2O | KOH | 2/2 | 200 | 75 | 23000 | 300 | [ | |
[(PNP)RuH(Cl)(CO)] | MeOH/H2O | KOH/KHCO3 | — | 150 | 36 | 18420 | 510 | [ | |
[(PNP)RuH(H-BH3)(CO)] | H2O/THF | Na2CO3 | 1.2/3.8 | 79 | 1 | 2200 | 2100 | [ | |
[(PNN)RuH(CO) | Diglyme | K2CO3 | 1.0/3.0 | 200 | 48 | 23000 | 480 | [ | |
[RuCl(H)CO(PNP)] | THF | Morpholine | 3.5/3.5 | 120 | 96 | 1940000 | 20208 | [ | |
[Ru(Acriphos)(PPh3)(Cl)(PhCO2)] | DMSO/H2O | Acetate buffer | 4/8 | 60 | 16 | 16310 | 1019 | [ | |
Ru/PNNN | iPrOH | tBuOK | 4/4 | 90 | 30 | 300000 | 10000 | [ | |
[RhCl(TPPTS)3] | H2O | NHMe2 | 2/2 | r.t. | 12 | 3400 | 280 | [ | |
[RhCl(PPh3)3]/PPh3 | MeOH/DMSO | NEt3 | 4/2 | r.t. | 20 | 2500 | 125 | [ | |
RhCl3•3H2O/CyPPh2 | MeOH | PEI600 | 4/4 | 60 | 32 | 852 | 27 | [ | |
[Cp*Ir(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 1 | 21000 | 23000 | [ | |
[(Cp*Ir)2(THBPM)(H2O)2](SO4)2 | H2O | KHCO3 | 2.5/2.5 | 80 | 1 | 79000 | 53800 | [ | |
[(PNP)IrH3] | H2O/THF | KOH | 3/3 | 120 | 48 | 3500000 | 73000 | [ | |
[(PNP)IrH2(OOCH)] | H2O | KOH | 2.8/2.8 | 185 | 2 | 37300 | 18600 | [ | |
[Cp*Ir(N,N')Cl]Cl | H2O | — | 2.5/2.5 | 80 | 0.08 | 1100 | 13000 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/h–1 | Ref. | |
---|---|---|---|---|---|---|---|---|---|
[RuH2(PPh3)4] | C6H6/H2O | NEt3 | 2.5/2.5 | r.t. | 20 | 87 | 4 | [ | |
[RuH2(PMe3)4] | scCO2 | NEt3/H2O | 12/8.5 | 50 | 1 | 3700 | 1400 (initial) | [ | |
[RuH2(PMe3)4] | scCO2 | NHMe2 | 13/8 | 100 | 14 | 370000 | 26428 | [ | |
[RuCl2(dppe)2] | scCO2 | NHMe2 | 13/8.5 | 100 | 2.05 | 740000 | 360000 | [ | |
[RuCl(OAc)(PMe3)4] | scCO2 | NEt3/C6F5OH | 12/7 | 50 | 0.3 | 31200 | 95000 | [ | |
[(C6Me6)Ru(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 24 | 15400 | 640 | [ | |
[RuCl2(C6H6)]2/DPPM | H2O/THF | NaHCO3 | 0/5 | 70 | 2 | 1400 | 690 | [ | |
[(η6-p-Cymene)Ru(bis-NHC)Cl]PF6 | H2O | KOH | 2/2 | 200 | 75 | 23000 | 300 | [ | |
[(PNP)RuH(Cl)(CO)] | MeOH/H2O | KOH/KHCO3 | — | 150 | 36 | 18420 | 510 | [ | |
[(PNP)RuH(H-BH3)(CO)] | H2O/THF | Na2CO3 | 1.2/3.8 | 79 | 1 | 2200 | 2100 | [ | |
[(PNN)RuH(CO) | Diglyme | K2CO3 | 1.0/3.0 | 200 | 48 | 23000 | 480 | [ | |
[RuCl(H)CO(PNP)] | THF | Morpholine | 3.5/3.5 | 120 | 96 | 1940000 | 20208 | [ | |
[Ru(Acriphos)(PPh3)(Cl)(PhCO2)] | DMSO/H2O | Acetate buffer | 4/8 | 60 | 16 | 16310 | 1019 | [ | |
Ru/PNNN | iPrOH | tBuOK | 4/4 | 90 | 30 | 300000 | 10000 | [ | |
[RhCl(TPPTS)3] | H2O | NHMe2 | 2/2 | r.t. | 12 | 3400 | 280 | [ | |
[RhCl(PPh3)3]/PPh3 | MeOH/DMSO | NEt3 | 4/2 | r.t. | 20 | 2500 | 125 | [ | |
RhCl3•3H2O/CyPPh2 | MeOH | PEI600 | 4/4 | 60 | 32 | 852 | 27 | [ | |
[Cp*Ir(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 1 | 21000 | 23000 | [ | |
[(Cp*Ir)2(THBPM)(H2O)2](SO4)2 | H2O | KHCO3 | 2.5/2.5 | 80 | 1 | 79000 | 53800 | [ | |
[(PNP)IrH3] | H2O/THF | KOH | 3/3 | 120 | 48 | 3500000 | 73000 | [ | |
[(PNP)IrH2(OOCH)] | H2O | KOH | 2.8/2.8 | 185 | 2 | 37300 | 18600 | [ | |
[Cp*Ir(N,N')Cl]Cl | H2O | — | 2.5/2.5 | 80 | 0.08 | 1100 | 13000 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/(h–1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Fe(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 100 | 20 | 7546 | 377 | [ | |
[(PNP)Fe(H2)(CO)] | H2O/THF | NaOH | 0.33/0.67 | 80 | 5 | 790 | 160 | [ | |
[(PNNNP)Fe(H)Br(CO)] | EtOH | DBU | 4.0/4.0 | 80 | 21 | 10275 | 489 | [ | |
[(PNP)Fe(H)(OOCH)(CO)] | THF | DBU/LiOTf | 3.5/3.5 | 80 | 1 | 46100 | 23200 | [ | |
[Fe(rac-P4)(CH3CN)2](BF4)2 | MeOH | NaHCO3 | 0/6.0 | 80 | 24 | 1200 | 50 | [ | |
[Fe] complex | EtOH/H2O | NaHCO3 | 0/3.0 | 120 | 24 | 447 | 19 | [ | |
Co(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 120 | 20 | 3877 | 190 | [ | |
[Co(DMPE)2H] | THF | Verkade's base | 1.0/1.0 | 21 | n/a | 9400 | 74000 | [ | |
[Cp*Co(4,4'-DHBP)(H2O)](PF6)2 | H2O | NaHCO3 | 2.0/2.0 | 100 | 1 | 39 | 39 | [ | |
[(PNP5)Co(CO)2]Cl | CH3CN | DBU/LiOTf | 3.5/3.5 | 45 | 1 | 29000 | 5700 | [ | |
[(PCP)Ni(H)])RuH(CO)] | MeOH | NaHCO3 | 0/5.5 | 150 | 20 | 3000 | 150 | [ | |
Cu(OAc)2•H2O | 1,4-Dioxane | DBU | 2.0/2.0 | 100 | 116 | 167 | 1.4 | [ | |
[Cu(triphos)(MeCN)]PF6 | CH3CN | DBU | 2.0/2.0 | 140 | 2 | 96 | 48 | [ | |
[(PMeNP4)Mo(C2H4)(OOCH)] | 1,4-Dioxane | DBU/LiOTf | 3.5/3.5 | 100 | 16 | 35 | 2 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/(h–1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Fe(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 100 | 20 | 7546 | 377 | [ | |
[(PNP)Fe(H2)(CO)] | H2O/THF | NaOH | 0.33/0.67 | 80 | 5 | 790 | 160 | [ | |
[(PNNNP)Fe(H)Br(CO)] | EtOH | DBU | 4.0/4.0 | 80 | 21 | 10275 | 489 | [ | |
[(PNP)Fe(H)(OOCH)(CO)] | THF | DBU/LiOTf | 3.5/3.5 | 80 | 1 | 46100 | 23200 | [ | |
[Fe(rac-P4)(CH3CN)2](BF4)2 | MeOH | NaHCO3 | 0/6.0 | 80 | 24 | 1200 | 50 | [ | |
[Fe] complex | EtOH/H2O | NaHCO3 | 0/3.0 | 120 | 24 | 447 | 19 | [ | |
Co(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 120 | 20 | 3877 | 190 | [ | |
[Co(DMPE)2H] | THF | Verkade's base | 1.0/1.0 | 21 | n/a | 9400 | 74000 | [ | |
[Cp*Co(4,4'-DHBP)(H2O)](PF6)2 | H2O | NaHCO3 | 2.0/2.0 | 100 | 1 | 39 | 39 | [ | |
[(PNP5)Co(CO)2]Cl | CH3CN | DBU/LiOTf | 3.5/3.5 | 45 | 1 | 29000 | 5700 | [ | |
[(PCP)Ni(H)])RuH(CO)] | MeOH | NaHCO3 | 0/5.5 | 150 | 20 | 3000 | 150 | [ | |
Cu(OAc)2•H2O | 1,4-Dioxane | DBU | 2.0/2.0 | 100 | 116 | 167 | 1.4 | [ | |
[Cu(triphos)(MeCN)]PF6 | CH3CN | DBU | 2.0/2.0 | 140 | 2 | 96 | 48 | [ | |
[(PMeNP4)Mo(C2H4)(OOCH)] | 1,4-Dioxane | DBU/LiOTf | 3.5/3.5 | 100 | 16 | 35 | 2 | [ |
Catalyst precursor | Substrate | Solvent | Additive | P(CO2/H2)a | T/℃ | Time/h–1 | TON | TOF/h–1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
[Ru3(CO)12] | CO2 | NMP | KI | 2/6 | 240 | 3 | 32 | 10 | [ |
[Ru(Cl)(OAc)(PMe)]/Sc(OTf)/ [(PNN)Ru(H)(CO)] | CO2 | 1,4-Dioxane | — | 1/3 | 75 | 16 | 21 | 1.3 | [ |
[(PNP)Ru(HBH)H(CO)] | CO2 | THF | K3PO4 | 0.25/5 | 95 | 54 | 550 | 10 | [ |
[Ru(triphos)(tmm)]2 | CO2 | THF | EtOH | 2/6 | 140 | 24 | 221 | 37 | [ |
[(PNN)Ru(H)Cl(CO)] | CO2 | DMSO | Cs2CO3/K3PO4 | 0.1/6 | 150 | 96 | n/ab | n/a | [ |
[(PNP)Ru(HBH3)H(CO)] | CO2 | THF | PEHAc, K3PO4 | 0.75/6.75 | 145 | 200 | 1200 | 6 | [ |
[(PNP)Ru(H)Cl(CO)] | Ethylene carbonate | THF | KOtBu | 0/6 | 140 | 72 | 87000 | 1200 | [ |
[(PNN)Ru(H)(CO)] | urea | THF | — | 0/1.36 | 110 | 72 | n/a | n/a | [ |
[(PNN)Ru(H)(CO)] | HCOOMe | THF | — | 0/5 | 110 | 14 | 4700 | 335 | [ |
[FeCl2{κ3-HC(pz)3}] | CO2 | — | PEHA | 1.9/5.6 | 80 | 36 | 2387 | 66 | [ |
[(PNP)Fe(H)(CO)] | CO2 | 1,4-Dioxane | Morpholine | 1.7/7.9 | 100 | 16 | 590 | 37 | [ |
[(PNP)MnBr(CO)2] | CO2 | THF | K3PO4 | 3/3 | 110 | 24~36 | 36 | n/a | [ |
Co(BF4)2•6H2O/PP3 | CO2 | THF/EtOH | HNTf2 | 2/7 | 100 | 24 | 50 | 2 | [ |
Catalyst precursor | Substrate | Solvent | Additive | P(CO2/H2)a | T/℃ | Time/h–1 | TON | TOF/h–1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
[Ru3(CO)12] | CO2 | NMP | KI | 2/6 | 240 | 3 | 32 | 10 | [ |
[Ru(Cl)(OAc)(PMe)]/Sc(OTf)/ [(PNN)Ru(H)(CO)] | CO2 | 1,4-Dioxane | — | 1/3 | 75 | 16 | 21 | 1.3 | [ |
[(PNP)Ru(HBH)H(CO)] | CO2 | THF | K3PO4 | 0.25/5 | 95 | 54 | 550 | 10 | [ |
[Ru(triphos)(tmm)]2 | CO2 | THF | EtOH | 2/6 | 140 | 24 | 221 | 37 | [ |
[(PNN)Ru(H)Cl(CO)] | CO2 | DMSO | Cs2CO3/K3PO4 | 0.1/6 | 150 | 96 | n/ab | n/a | [ |
[(PNP)Ru(HBH3)H(CO)] | CO2 | THF | PEHAc, K3PO4 | 0.75/6.75 | 145 | 200 | 1200 | 6 | [ |
[(PNP)Ru(H)Cl(CO)] | Ethylene carbonate | THF | KOtBu | 0/6 | 140 | 72 | 87000 | 1200 | [ |
[(PNN)Ru(H)(CO)] | urea | THF | — | 0/1.36 | 110 | 72 | n/a | n/a | [ |
[(PNN)Ru(H)(CO)] | HCOOMe | THF | — | 0/5 | 110 | 14 | 4700 | 335 | [ |
[FeCl2{κ3-HC(pz)3}] | CO2 | — | PEHA | 1.9/5.6 | 80 | 36 | 2387 | 66 | [ |
[(PNP)Fe(H)(CO)] | CO2 | 1,4-Dioxane | Morpholine | 1.7/7.9 | 100 | 16 | 590 | 37 | [ |
[(PNP)MnBr(CO)2] | CO2 | THF | K3PO4 | 3/3 | 110 | 24~36 | 36 | n/a | [ |
Co(BF4)2•6H2O/PP3 | CO2 | THF/EtOH | HNTf2 | 2/7 | 100 | 24 | 50 | 2 | [ |
Entry | Amine | Capture solvent | Captured asa | Precat. | P(H2)/MPa | T/℃ (t/h) | Yield/% (TON) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1 | Glycol | b | RhCl3•3H2O+L-1b | 4.0 | 60 (16) | 55 (726) | [ |
2 | 2 | — | b | RhCl3•3H2O+L-2b | 4.0 | 60 (16) | 97 (169) | [ |
3 | 3 | — | c | d | 2.0 | 120 (1) | n/ag (248) | [ |
4 | 4 | Water | b | C-1 | 5.0 | 55 (20) | 95 (7375) | [ |
5 | PEHAe | Water | b+c | C-2 | 8.0 | 50 (10) | 53 (255) | [ |
6 | 5 | Water | b | C-3f | 11.0 | 130 (12) | 93 (700) | [ |
Entry | Amine | Capture solvent | Captured asa | Precat. | P(H2)/MPa | T/℃ (t/h) | Yield/% (TON) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1 | Glycol | b | RhCl3•3H2O+L-1b | 4.0 | 60 (16) | 55 (726) | [ |
2 | 2 | — | b | RhCl3•3H2O+L-2b | 4.0 | 60 (16) | 97 (169) | [ |
3 | 3 | — | c | d | 2.0 | 120 (1) | n/ag (248) | [ |
4 | 4 | Water | b | C-1 | 5.0 | 55 (20) | 95 (7375) | [ |
5 | PEHAe | Water | b+c | C-2 | 8.0 | 50 (10) | 53 (255) | [ |
6 | 5 | Water | b | C-3f | 11.0 | 130 (12) | 93 (700) | [ |
[1] |
https://www.iea.org/reports/global-energy-co2-statusreport-2019
|
[2] |
Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; Taylor, P. C.; Vose, R. S.; Wehner, M. F. In Climate Science Special Report: Fourth National Climate Assessment, Vol. I, U.S. Global Change Research Program, Washington, DC, 2017, pp. 35-72.
|
[3] |
(a) Zhang, L. L.; Han, Z. B.; Zhang, L.; Li, M. X.; Ding, K. L. Chin. J. Org. Chem. 2016, 36, 1824. (in Chinese)
|
(张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
|
|
(b) Dong, K. W.; Razzaq, R.; Hu, Y. Y.; Ding, K. L. Top. Curr. Chem. 2017, 375, 23.
|
|
(c) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978. (in Chinese)
doi: 10.6023/cjoc201702038 |
|
(李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978.)
doi: 10.6023/cjoc201702038 |
|
(d) Zhang, W. Z.; Zhang, N.; Guo, C. X.; Lu, X. B. Chin. J. Org. Chem. 2017, 37, 1309. (in Chinese)
doi: 10.6023/cjoc201701031 |
|
(张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309.)
|
|
(e) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948.
doi: 10.1002/anie.v57.49 |
|
(f) Wang, Q.; Sun, J. Chem. Bull. 2018, 81, 312. (in Chinese)
|
|
(王强, 孙京, 化学通报, 2018, 81, 312.)
|
|
(g) Zhang, Y.; Cen, J.; Xiong, W.; Qi, Z.; Jiang, H. Prog. Chem. 2018, 30, 547. (in Chinese)
doi: 10.7536/PC171251 |
|
(张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰, 化学进展, 2018, 30, 547.)
doi: 10.7536/PC171251 |
|
(h) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
doi: 10.1039/C8CS00281A |
|
(i) Chen, L.; Xie, J. H. Chin. J. Org. Chem. 2020, 40, 247. (in Chinese)
doi: 10.6023/cjoc202000005 |
|
(程磊, 谢建华, 有机化学, 2020, 40, 247.)
doi: 10.6023/cjoc202000005 |
|
(j) Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518.
doi: 10.1021/acs.accounts.1c00135 |
|
(k) Yi, Y. P.; Hang, W.; Xi, C. J. Chin. J. Org. Chem. 2021, 41, 80. (in Chinese)
doi: 10.6023/cjoc202007013 |
|
(易雅平, 杭炜, 席婵娟, 有机化学, 2021, 41, 80.)
doi: 10.6023/cjoc202007013 |
|
(o) Zhang, Z.; Gong, L.; Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783. (in Chinese)
doi: 10.6023/A19060208 |
|
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
doi: 10.6023/A19060208 |
|
(p) Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221. (in Chinese)
doi: 10.6023/cjoc202003039 |
|
(周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.)
doi: 10.6023/cjoc202003039 |
|
(q) Chen, K. H.; Li, H. R.; He, L. N. Chin. J. Org. Chem. 2020, 40, 2195.
doi: 10.6023/cjoc202004030 |
|
(陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
doi: 10.6023/cjoc202004030 |
|
(r) Guo, X.; Wang, Y. Z.; Chen, J.; Li, G. Q.; Xia, J. B. Chin. J. Org. Chem. 2020, 40, 2208. (in Chinese)
doi: 10.6023/cjoc202002032 |
|
(郭霄, 王亚洲, 陈洁, 李公强, 夏纪宝, 有机化学, 2020, 40, 2208.)
doi: 10.6023/cjoc202002032 |
|
[4] |
Leitner, W. Angew. Chem., Int. Ed. 1995, 34, 2207.
doi: 10.1002/(ISSN)1521-3773 |
[5] |
(a) Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333, 1733.
doi: 10.1126/science.1206613 pmid: 21940890 |
(b) Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
doi: 10.1021/acs.chemrev.7b00182 pmid: 21940890 |
|
[6] |
Ding, S. T.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 9226.
doi: 10.1002/anie.201200859 |
[7] |
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804.
doi: 10.1021/acs.chemrev.6b00816 pmid: 28656757 |
[8] |
Sordakis, K, Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
doi: 10.1021/acs.chemrev.7b00182 |
[9] |
Farlow, M. W.; Adkins, H. J. Am. Chem. Soc. 1935, 57, 2222.
doi: 10.1021/ja01314a054 |
[10] |
Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 863.
|
[11] |
Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231.
doi: 10.1038/368231a0 |
[12] |
Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.
doi: 10.1021/ja00098a072 |
[13] |
Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
|
[14] |
Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C. C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124, 7963.
doi: 10.1021/ja0167856 |
[15] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
doi: 10.1021/om030382s |
[16] |
Federsel, C.; Jackstell, R.; Boddien, A.; Laurenczy, G.; Beller, M. ChemSusChem 2010, 3, 1048.
doi: 10.1002/cssc.v3:9 |
[17] |
Sanz, S.; Azua, A.; Peris, E. Dalton Trans. 2010, 39, 6339.
doi: 10.1039/c003220d |
[18] |
Liu, Q.; Wu, L.; Gulak, S.; Rockstroh, N.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 7085.
doi: 10.1002/anie.201400456 |
[19] |
Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Prakash, G. K. S.; Olah, G. A. ChemSusChem 2015, 8, 1442.
doi: 10.1002/cssc.201403458 pmid: 25824142 |
[20] |
Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 3, 2412.
doi: 10.1021/cs400609u |
[21] |
Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
doi: 10.1002/anie.201500939 |
[22] |
Rohmann, K.; Kothe, J.; Haenel, M. W.; Englert, U.; Hölscher, M.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 8966.
doi: 10.1002/anie.201603878 |
[23] |
Weilhard, A.; Qadir, M. I. Sans, V. Dupont, J. ACS Catal. 2018, 8, 1628.
doi: 10.1021/acscatal.7b03931 |
[24] |
Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.
doi: 10.1002/cjoc.201800278 |
[25] |
Westhues, N.; Belleflamme, M.; Klankermayer, J. ChemCatChem 2019, 11, 5269.
doi: 10.1002/cctc.201900627 |
[26] |
Malaza, S. S. P.; Makhubela, B. C. E. Journal of CO2 Utilization 2020, 39, 101149.
|
[27] |
Tsai, J. C.; Nicholas, K.M. J. Am. Chem. Soc. 1992, 114, 5117.
doi: 10.1021/ja00039a024 |
[28] |
Hutschka, F.; Dedieu, A.; Eichberger, M.; Fornika, R.; Leitner, W. J. Am. Chem. Soc. 1997, 119, 4432.
doi: 10.1021/ja961579x |
[29] |
Zhang, J. J.; Qian, Q. L.; Wang, Y.; Bediako, B. B.; Cui, M.; Yang, G. Y.; Han, B. X. Green Chem. 2019, 21, 233.
doi: 10.1039/C8GC03476A |
[30] |
Laureanti, J. A.; Buchko, G. W.; Katipamula, S.; Su, Q.; Linehan, J. C.; Zadvornyy, O. A.; Peters, J. W.; O'Hagan, M. ACS Catal. 2019, 9, 620.
doi: 10.1021/acscatal.8b02615 |
[31] |
Gassner, F.; Leitner, W. J. Chem. Soc., Chem. Commun. 1993, 1465.
|
[32] |
Ezhova, N. N.; Kolesnichenko, N. V.; Bulygin, A. V.; Slivinskii, E. V.; Han, S. Russ. Chem. Bull. 2002, 51, 2165.
doi: 10.1023/A:1022162713837 |
[33] |
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
[34] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
doi: 10.1021/om030382s |
[35] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. Organometallics 2007, 26, 702.
doi: 10.1021/om060899e |
[36] |
Ogo, S.; Kabe, R; Hayashi, H.; Harada, R.; Fukuzumi, S. Dalton Trans. 2006, 4657.
|
[37] |
Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.
doi: 10.1021/ja903574e pmid: 19775157 |
[38] |
Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274.
doi: 10.1021/ja2035514 pmid: 21612297 |
[39] |
Azua, A.; Sanz, S.; Peris, E. Chem.-Eur. J. 2011, 17, 3963.
doi: 10.1002/chem.201002907 |
[40] |
Liu, C.; Xie, J. H.; Tian, G. L.; Li, W.; Zhou, Q. L. Chem. Sci. 2015, 6, 2928.
doi: 10.1039/C5SC00248F |
[41] |
Fidalgo, J.; Ruiz-Castañeda, M.; García-Herbosa, G.; Carbayo, A.; Jalόn, F. A.; Rodríguez, A. M.; Manzano, B. R.; Espino, G. Inorg. Chem. 2018, 57, 14186.
doi: 10.1021/acs.inorgchem.8b02164 pmid: 30395446 |
[42] |
Kanega, R.; Ertem, M. Z.; Onishi, N.; Szalda, D. J.; Fujita, E. Organometallics 2020, 39, 1519.
doi: 10.1021/acs.organomet.9b00809 |
[43] |
Hull, J. F.; Himeda, Y.; Wang, W. H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383.
doi: 10.1038/nchem.1295 |
[44] |
Lu, S. M.; Wang, Z.; Li, J.; Xiao, J.; Li, C. Green Chem. 2016, 18, 4553.
doi: 10.1039/C6GC00856A |
[45] |
Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31, L387.
doi: 10.1016/S0020-1693(00)94933-8 |
[46] |
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
doi: 10.1021/ic034881x |
[47] |
Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
doi: 10.1002/anie.201004263 |
[48] |
Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701.
doi: 10.1021/ja307924a |
[49] |
Montandon-Clerc, M.; Laurenczy, G. J. Catal. 2018, 362, 78.
doi: 10.1016/j.jcat.2018.03.030 |
[50] |
Bertini, F.; Gorgas, N.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2016, 6, 2889.
doi: 10.1021/acscatal.6b00416 |
[51] |
Jayarathne, U.; Hazari, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.
doi: 10.1021/acscatal.7b03834 |
[52] |
(a) Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.
doi: 10.1021/acs.accounts.8b00262 |
(b) Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
doi: 10.1002/chem.v18.1 |
|
[53] |
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
doi: 10.1021/ic034881x |
[54] |
Affan, M. A.; Jessop, P. G. Inorg. Chem. 2017, 56, 7301.
doi: 10.1021/acs.inorgchem.7b01242 |
[55] |
Affan, M. A.; Schatte, G.; Jessop, P. G. Inorg. Chem. 2020, 59, 14275.
doi: 10.1021/acs.inorgchem.0c01401 |
[56] |
Watari, R.; Kayaki, Y.; Hirano, S.; Matsumoto, N.; Ikariya, T. Adv. Synth. Catal. 2015, 357, 1369.
doi: 10.1002/adsc.v357.7 |
[57] |
Zall, C. M.; Linehan, J. C.; Appel, A. M. ACS Catal. 2015, 5, 5301.
doi: 10.1021/acscatal.5b01646 |
[58] |
Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci. China Chem. 2019, 62, 256.
doi: 10.1007/s11426-018-9358-6 |
[59] |
(a) Du, C. Y.; Chen, Y. F. Acta Chim. Sinica 2020, 78, 938. (in Chinese)
doi: 10.6023/A20060268 |
(杜重阳, 陈耀峰, 化学学报, 2020, 78, 938.)
doi: 10.6023/A20060268 |
|
(b) Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.
doi: 10.1002/cjoc.v38.10 |
|
[60] |
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
doi: 10.1002/anie.v50.42 |
[61] |
Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. H. Chem. Sci. 2015, 6, 4291.
doi: 10.1039/C5SC01467K |
[62] |
Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
doi: 10.1021/cs501998t |
[63] |
Zhu, F.; Zhu-Ge, L.; Yang, G.; Zhou, S. ChemSusChem 2015, 8, 609.
doi: 10.1002/cssc.v8.4 |
[64] |
Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
doi: 10.1002/chem.v18.1 |
[65] |
Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. J. Am. Chem. Soc. 2013, 135, 11533.
doi: 10.1021/ja406601v |
[66] |
Badiei, Y. M.; Wang, W.-H.; Hull, J. F.; Szalda, D. J.; Muckerman, J. T.; Himeda, Y.; Fujita, E. Inorg. Chem. 2013, 52, 12576.
doi: 10.1021/ic401707u pmid: 24131038 |
[67] |
Spentzos, A. Z.; Barnes, C. L.; Bernskoetter, W. H. Inorg. Chem. 2016, 55, 8225.
doi: 10.1021/acs.inorgchem.6b01454 pmid: 27454669 |
[68] |
Enthaler, S.; Bruck, A.; Kammer, A.; Junge, H.; Irran, E.; Gulak, S. ChemCatChem 2015, 7, 65.
doi: 10.1002/cctc.v7.1 |
[69] |
Zhang, Y. Y.; Williard, P. G.; Bernskoetter, W. H. Organometallics 2016, 35, 860.
doi: 10.1021/acs.organomet.5b00955 |
[70] |
Reuss, G.; Disteldorf, W.; Gamer, A. O.; Hilt, A. In UllmannÏs Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
|
[71] |
Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
doi: 10.1021/ja500708w |
[72] |
Ren, X. Y.; Zheng, Z. Y.; Zhang, L.; Wang, Z.; Xia, C. G.; Ding, K. L. Angew. Chem. 2017, 129, 316.
doi: 10.1002/ange.v129.1 |
[73] |
Hua, K. M.; Liu, X. F.; Wei, B. Y.; Shao, Z. L.; Deng, Y. C.; Zhong, L. S.; Wang, H.; Sun, Y. H. Green Chem. 2021, DOI: 10.1039/d0gc03913f.
doi: 10.1039/d0gc03913f |
[74] |
(a) Arpe, H. J. Industrial Organic Chemistry, Vol. 5, Wiley-VCH, Weinheim, 2010.
|
(b) Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H. J. Methanol: The Basic Chemical and Energy Feedstock of the Future, Springer, Amsterdam, 2013.
|
|
(c) Baerns, M.; Behr, A.; Brehm, A.; Gmehling, J.; Hofmann, H.; Onken, U.; Renken, A. Technische Chemie, Wiley-VCH, Weinheim, 2006.
|
|
[75] |
(a) Gaikwad, R.; Bansode, A.; Urakawa, A. J. Catal. 2016, 343, 127.
doi: 10.1016/j.jcat.2016.02.005 |
(b) Xie, S.; Zhang, W.; Lan, X.; Lin, H. ChemSusChem 2020, 13, 6141.
|
|
[76] |
Jessop, P. G. In The Handbook of Homogeneous Hydrogenation, Eds.: de Vries, J. G.; Elsevier, C. J., Wiley-VCH, Weinheim, 2007, p. 489.
|
[77] |
(a) Tominaga, K. I.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc. Chem. Commun. 1993, 629.
|
(b) Tominaga, K. i.; Sasaki, Y.; Watanabe, T.; Saito, M. Bull. Chem. Soc. Jpn. 1995, 68, 2837.
doi: 10.1246/bcsj.68.2837 |
|
[78] |
(a) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
doi: 10.1038/nchem.1089 |
(b) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702.
doi: 10.1002/anie.201106612 |
|
(c) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756.
doi: 10.1021/ja1080019 |
|
[79] |
Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.
doi: 10.1021/ja208760j |
[80] |
Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
doi: 10.1021/ja511329m pmid: 25594380 |
[81] |
Wesselbaum, S.; Stein, T. v.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
doi: 10.1002/anie.201202320 |
[82] |
Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.
doi: 10.1021/acscatal.5b00194 |
[83] |
Qian, Q. L.; Cui, M.; He, Z. H.; Wu, C. Y.; Zhu, Q. G.; Zhang, Z. F.; Ma, J.; Yang, G. Y.; Zhang, J. J.; Han, B. X. Chem. Sci. 2015, 6, 5685.
doi: 10.1039/C5SC02000J |
[84] |
Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.; Klankermayer, J. Angew. Chem., Int. Ed. 2016, 55, 12266.
doi: 10.1002/anie.201606427 |
[85] |
Wang, Z.; Zhao, Z. W.; Li, Y.; Zhong, Y. X.; Zhang, Q. Y.; Liu, Q. B.; Solan, G. A.; Ma, Y. P.; Sun, W. H. Chem. Sci. 2020, 11, 6766.
doi: 10.1039/D0SC02942D |
[86] |
Schieweck, B. G.; Jurling-Will, P.; Klankermayer, J. ACS Catal. 2020, 10, 3890.
doi: 10.1021/acscatal.9b04977 |
[87] |
Ribeiro, A. P. C.; L. Martins, M. D. R. S.; Pombeiro, A. J. L. Green Chem. 2017, 19, 4811.
doi: 10.1039/C7GC01993A |
[88] |
Lane, E. M.; Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Organometallics 2019, 38, 3084.
doi: 10.1021/acs.organomet.9b00413 |
[89] |
(a) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.
doi: 10.1021/jacs.7b10149 |
(b) Qiu, J.; Gao, S.; Li, C. P.; Zhang, L.; Wang, Z.; Wang, X. M.; Ding, K. L. Chem.-Eur. J. 2019, 25, 13874.
doi: 10.1002/chem.v25.61 |
|
(c) Chen, X. W.; Zhu, L.; Gui, Y. Y.; Jing, K.; Jiang, Y. X.; Bo, Z. Y.; Lan, Y.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2019, 141, 18825.
doi: 10.1021/jacs.9b09721 |
|
(d) Wang, M. Y.; Jin, X.; Wang, X. F.; Xia, S. M.; Wang, Y.; Huang, S. Y.; Li, Y.; He, L. N.; Ma, X. B. Angew. Chem., Int. Ed. 2021, 60, 3984.
doi: 10.1002/anie.v60.8 |
|
[90] |
(a) Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2009, 48, 2739.
doi: 10.1021/ie8016237 |
(b) Wang, C. M.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angew. Chem., Int. Ed. 2010, 49, 5978.
doi: 10.1002/anie.201002641 |
|
[91] |
(a) Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
(b) Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
doi: 10.1039/c2ee02774g |
|
(c) Kar, S.; Goeppert, A.; Surya Prakash, G. K. Acc. Chem. Res. 2019, 52, 2892.
doi: 10.1021/acs.accounts.9b00324 |
|
[92] |
(a) Yang, Z. Z.; Zhao, Y. N.; He, L. N. RSC Adv. 2011, 1, 545.
doi: 10.1039/c1ra00307k |
(b) Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.
doi: 10.1039/c1ee02156g |
|
[93] |
(a) Su, J.; Lu, M.; Lin, H. Green Chem. 2015, 17, 2769.
doi: 10.1039/C5GC00397K pmid: 26335851 |
(b) Moret, S.; Dyson, P. J.; Laurenczy, G. Nat. Commun. 2014, 5, 4017.
doi: 10.1038/ncomms5017 pmid: 26335851 |
|
(c) Schuchmann, K.; Müller, V. Science 2013, 342, 1382.
doi: 10.1126/science.1244758 pmid: 26335851 |
|
(d) Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.
doi: 10.1021/acs.chemrev.5b00197 pmid: 26335851 |
|
(e) Zhao, T.; Hu, X.; Wu, Y.; Zhang, Z. Angew. Chem., Int. Ed. 2019, 58, 722.
doi: 10.1002/anie.201809634 pmid: 26335851 |
|
(f) Scott, M.; Blas Molinos, B.; Westhues, C.; Franciò, G.; Leitner, W. ChemSusChem 2017, 10, 1085.
doi: 10.1002/cssc.201601814 pmid: 26335851 |
|
[94] |
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
[95] |
Zhang, S.; Li, Y. N.; Zhang, Y. W.; He, L. N.; Yu, B.; Song, Q. W.; Lang, X. D. ChemSusChem 2014, 7, 1484.
doi: 10.1002/cssc.201400133 |
[96] |
Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.
doi: 10.1039/C4RA08740B |
[97] |
McNamara, N. D.; Hicks, J. C. ChemSusChem 2014, 7, 1114.
doi: 10.1002/cssc.201301231 |
[98] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. Green Chem. 2016, 18, 5831.
doi: 10.1039/C6GC01165A |
[99] |
Guan, C.; Pan, Y.; Ang, E. P. L.; Hu, J.; Yao, C.; Huang, M. H.; Li, H.; Lai, Z.; Huang, K. W. Green Chem. 2018, 20, 4201.
doi: 10.1039/C8GC02186D |
[100] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. J. Am. Chem. Soc. 2016, 138, 778.
doi: 10.1021/jacs.5b12354 pmid: 26713663 |
[101] |
(a) Boddien, A.; Gärtner, F.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6411.
doi: 10.1002/anie.201101995 pmid: 25824142 |
(b) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
doi: 10.1002/anie.v50.42 pmid: 25824142 |
|
(c) Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Surya Prakash, G. K.; Olah, G. A. ChemSusChem 2015, 8, 1442.
doi: 10.1002/cssc.201403458 pmid: 25824142 |
|
(d) Dai, Z.; Luo, Q.; Cong, H.; Zhang, J.; Peng, T. New J. Chem. 2017, 41, 3055.
doi: 10.1039/C6NJ03855G pmid: 25824142 |
|
(e) Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
doi: 10.1021/cs501998t pmid: 25824142 |
|
[102] |
Kar, S.; Goeppert, A.; Galvan, V.; Chowdhury, R.; Olah, J.; Surya Prakash, G. K. J. Am. Chem. Soc. 2018, 140, 16873.
doi: 10.1021/jacs.8b09325 |
[103] |
Li, Y. N.; Liu, X. F.; He, L. N. J. CO2 Util. 2019, 29, 74.
|
[104] |
Han, Z. B.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 13041.
doi: 10.1002/anie.201207781 |
[105] |
(a) The omega process (the only advanced mono EG process) is a process in which ethylene oxide is reacted with CO2 to first afford ethylene carbonate, followed by catalytic hydrolysis of the carbonate to selectively produce mono EG, which is an important component of automotive antifreeze and a key precursor to polyester, with global demands of over 25 million metric tons in 2010. The prices of ethylene epoxide, CO2, and EG are 1600, 50, and 1300 US$/metric ton, respectively.
|
(b) Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Mao, F.; Wei, W.; Sun, Y. Catal. Today 2009, 148, 221.
doi: 10.1016/j.cattod.2009.08.015 |
|
[106] |
Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
doi: 10.1038/nchem.1089 |
[107] |
Kar, S.; Goeppert, A.; Kothandaraman, J.; Prakash, G. K. S. ACS Catal. 2017, 7, 6347.
doi: 10.1021/acscatal.7b02066 |
[108] |
Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2017, 56, 1890.
doi: 10.1002/anie.201609077 |
[1] | Peng Wang, Da Yang, Huan Liu. Recent Advances on Carbonylation of 1,3-Dienes [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3379-3389. |
[2] | Yinyin Wang, Xiaowan Lin, Piao Zhang, Meihua Shen, Huadong Xu, Defeng Xu. Design and Synthesis of Pyridine and 1,3,5-Triazine PNP Pincer Ligands and Their Application in Cobalt Catalyzed Semihydrogenation of Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3312-3320. |
[3] | Fang Zhao, Wenjing Ye, Kai Wang. Advancement of Chiral Monodentate Phosphite Ligands in Asymmetric Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2650-2665. |
[4] | Li Sheng, Haoling Gao, Xufeng Wu, Gang Fan, Pengcheng Liu. Rhodium/(2S,2'S,3S,3'S)-3,3'-Di-tert-butyl-4,4'-dimethoxy-2,2',3,3'-tetrahydro-2,2'-bibenzo[d][1,3]oxaphosphole (MeO-BIBOP) Catalyzed Synthesis of (R)-3-tert-Butoxy-carbonylamino-4-(2,4,5-trifluorophenyl)butyric Acid by Asymmetric Reduction of Enamines [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 2105-2111. |
[5] | Xiaodie Wang, Chunyu Liu, Lingling Miao, Bingjie Xue, Xinju Zhu, Bing Song, Xinqi Hao, Guoji Liu. Transfer Hydrogenation of Ketones into Alcohols Catalyzed by a Novel Chiral Terpyridine Ruthenium(II) Complex [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1543-1550. |
[6] | Hao Tang, Beibei Zhang, Weidong Chen, Junfei Luo. A Mild and Efficient Catalytic Aerobic Oxidative Dehydrogenation of N-Pyridylindolines [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1131-1137. |
[7] | Jun Zhang, Yafei Liu, Yurong Zhang, Liang Hu, Shiqing Han. Progress in Synthesis of 2-Substituted Benzothiazole Compounds [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1053-1071. |
[8] | Huaiyu Bin, Li Cheng, Xiaohui Yang, Jianhua Xie, Qilin Zhou. Enantioselective Construction of the Pyridine-Fused Chiral Bicyclo- [3.3.1]nonane Skeleton of Huperzine A and Its Analogues [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 4021-4027. |
[9] | Feiyu Wang, Zhipeng Zhang, Fei Huang. Research Progress of O—H Insertion Reaction Based on Diazo Ester [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 144-157. |
[10] | Yaping Yi, Wei Hang, Chanjuan Xi. Recent Advance of Transition-Metal-Catalyzed Tandem Carboxylation Reaction of Unsaturated Hydrocarbons with Organometallic Reagents and CO2 [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 80-93. |
[11] | Liu Jiahao, Han Jingjie, Yi Xiaoyi, Liu Chao, He Piao. Research Progress of Homogeneous Catalyst for the Dehydrogenation of Formic Acid [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2658-2668. |
[12] | Zhang Lu, Liu Aiqin, Liu Huazheng, Wan Renzhong, Sun Shutao, Liu Lei. Catalytic Asymmetric Synthesis of β,γ-Alkynyl α-Amino Esters via Chemo- and Enantio-selective Transfer Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2904-2911. |
[13] | Fang Xiaolong, Duan Ning, Zhang Min, Li Bin. Advances for Ruthenium Catalysts with Metal-Ligand Cooperation for Hydrogenation of Oxalates into Ethylene Glycol [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2692-2701. |
[14] | Chen Kaihong, Li Hongru, He Liangnian. Advance and Prospective on CO2 Activation and Transformation Strategy [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2195-2207. |
[15] | Guo Xiao, Wang Yazhou, Chen Jie, Li Gongqiang, Xia Ji-Bao. Recent Advances of CO2 Fixation via Asymmetric Catalysis for the Direct Synthesis of Optically Active Small Molecules [J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2208-2220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||