化学学报 ›› 2011, Vol. 69 ›› Issue (04): 393-398. 上一篇    下一篇

研究论文

Fe3O4(111)面上的水煤气变换反应机理

陈磊,倪刚,韩波,周成冈*,吴金平*   

  1. (中国地质大学(武汉)可持续能源实验室 武汉 430074)
  • 投稿日期:2010-05-14 修回日期:2010-08-13 发布日期:2010-10-08
  • 通讯作者: 陈磊 E-mail:clsuccess@gmail.com
  • 基金资助:

    国家自然科学基金项目;国家自然科学基金项目

Mechanism of Water Gas Shift Reaction on Fe3O4 (111) Surface

CHEN Lei, NI Gang, HAN Bo, ZHOU Cheng-Gang, WU Jin-Ping   

  1. (Sustainable Energy Lab, China University of Geosciences, Wuhan 430074)
  • Received:2010-05-14 Revised:2010-08-13 Published:2010-10-08
  • Contact: Lei Chen E-mail:clsuccess@gmail.com

水煤气变换是一重要的制备氢气的反应, 采用密度泛函理论(DFT), 对水煤气变换反应在Fe3O4 (111)面上的催化反应作了深入研究. 结果表明: 氧化还原机理的活化能明显高于结合机理的活化能, 中间步骤应以结合机理进行|氢原子结合生成氢气为整个反应的速控步骤, 理论计算其活化能与水煤气变换实验数据一致, 高达1.29 eV, 还对迄今有关水煤气变换机理研究中的各种实验现象作了合理的解释, 并对Fe3O4 (111)催化剂的改性设计作了讨论.

关键词: 水煤气变换, 四氧化三铁, 密度泛函理论, 机理

Water gas shift (WGS) reaction is of great importance for industrial hydrogen production. Using density functional theory calculation, we systematically investigated the catalytic processes of WGS on Fe3O4 (111) surface. Our calculations indicate that the activation barrier of the redox mechanism is much larger than that of the associative mechanism, suggesting the intermediates of WGS prefer to undergo the associative pathway. H atoms recombination towards H2 is the rate determining step with an activation barrier of 1.29 eV, in good agreement with reported experimental values. The results provide rational explanations to the experimental phenomena of WGS reaction, and the improvement of Fe3O4(111) catalyst was also discussed.

Key words: water gas shift reaction, Fe3O4, density functional theory, mechanism

中图分类号: