化学学报 ›› 2026, Vol. 84 ›› Issue (1): 73-85.DOI: 10.6023/A25040118 上一篇    下一篇

研究论文

常温常压下N2、CO2和H2O体系TiO2机械化学合成尿素的实验与理论研究

楼一淳a, 何承溧a,b, 王霖锐a, 崔晓莉a,*()   

  1. a 复旦大学智能材料与未来能源创新学院 上海 200433
    b 中国科学院苏州纳米技术与纳米仿生研究所 苏州 215123
  • 投稿日期:2025-04-14 发布日期:2025-08-26

Mechanochemical Urea Synthesis Using Nitrogen, Water and Carbon Dioxide with TiO2 under Mild Conditions: An Experimental and Theoretical Study

Yichun Loua, Chengli Hea,b, Linrui Wanga, Xiaoli Cuia,*()   

  1. a College of Smart Materials and Future Energy, Fudan University, Shanghai 200433, China
    b Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • Received:2025-04-14 Published:2025-08-26
  • Contact: * E-mail: xiaolicui@fudan.edu.cn; Tel.: 13817061363

作为重要的化学品, 尿素的应用广泛, 然而传统Bosch-Meiser尿素生产工艺存在高能耗、高排放问题. 本工作提出在常温常压的条件下, 以N2、CO2和H2O为原料, 通过机械化学合成尿素的新策略. 利用二氧化锆球磨罐和磨球, 分别研究了TiO2、ZnO、Cu2O、Nb2O5、Fe2O3作为催化剂的机械化学合成尿素的催化作用. 其中TiO2表现出最佳的机械催化活性, 加入TiO2在相同条件下尿素的产率能够达到133.59 μg•L-1•h-1, 相对于无催化剂提升了2.2倍. 利用透射电子显微镜(TEM)、能量色散X射线能谱(EDS)、X射线衍射(XRD)、X射线光电子能谱(XPS)、电子顺磁共振(EPR)、Raman光谱对机械球磨合成尿素后的TiO2进行表征, 发现在机械球磨后TiO2中氧空位的含量上升. 利用傅里叶变换红外光谱(FT-IR)等技术检测了TiO2表面吸附的残余基团, 提出了可能的反应机理. 通过密度泛函理论计算研究了反应过程, H2O在催化剂表面的裂解和N2的活化是机械球磨合成尿素过程中两个重要步骤. TiO2中的氧空位不但能够促进对N2吸附和活化, 而且有助于H2O的裂解, 以释放出自由H. 在尿素合成的反应过程中, H2O裂解和*N2与*CO之间发生的C—N偶联反应是尿素合成过程中的共速控步. 本工作提出了一种以N2、CO2和H2O为原料通过机械化学合成尿素的方法, 初步揭示了TiO2对机械化学合成尿素的催化作用机理.

关键词: 尿素合成, 机械化学, TiO2催化剂, N2活化, 密度泛函理论

As an important chemical, urea has a wide range of applications. However, the conventional Bosch-Meiser process suffers from high energy consumption and substantial carbon emissions. This study proposes a novel mechanochemical strategy for urea synthesis under ambient temperature and pressure using N2, CO2, and H2O as feedstocks. Five transition metal oxide catalysts (TiO2, ZnO, Cu2O, Nb2O5, Fe2O3) were investigated for their mechanocatalytic effects in a ZrO2 jar equipped with ZrO2 balls, with TiO2 exhibiting the highest performance. Urea production rate was up to 133.59 μg•L-1•h-1 with the presence of TiO2, which is 2.2 times larger than that the catalyst-free conditions. TiO2 was characterized using transmission electron microscope (TEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy, revealing an increase in oxygen vacancies after the mechanochemical reaction. Fourier transform infrared spectroscopy (FT-IR) analysis was used to detect the adsorbed species on the TiO2 surface, providing mechanistic insights. Density functional theory (DFT) calculations identified H₂O dissociation and N2 activation as critical steps. The oxygen vacancies (Vo) in TiO2 not only enhanced the adsorption of N2 and H2O but also facilitated H2O dissociation to release free H atoms and weakened the N≡N bond. Both the H2O dissociation and the C—N coupling between *N2 and *CO were determined to be the rate-limiting step in urea formation. This study presents a green and energy-efficient mechanochemical approach for urea synthesis and elucidates the catalytic role of titanium dioxides in the process.

Key words: urea synthesis, mechanochemistry, TiO2 catalyst, N2 activation, density functional theory