化学学报 上一篇    下一篇

研究论文

PVP辅助MOF衍生分级多孔碳材料的制备及其双功能催化性能研究

税子怡*, 尹书睿, 邓锦涛, 许留云, 郭莉   

  1. 延安大学 化学与化工学院 延安 716000
  • 投稿日期:2025-06-25
  • 通讯作者: *E-mail: m18182696780@163.com
  • 基金资助:
    陕西省自然科学基础研究计划(2025JC-YBQN-728)、延安大学博士科研启动项目(YAU202507801)和2025年陕西省大学生创新训练计划项目(6029).

PVP-Assisted Synthesis of MOF-Derived Hierarchically Porous Carbon for Bifunctional Electrocatalysis

Ziyi Shui*, Shurui Yin, Jintao Deng, Liuyun Xu, Li Guo   

  1. College of Chemistry & Chemical Engineering, Yan’an University, Yan’an 716000
  • Received:2025-06-25

双效氧电极中的氧还原反应(ORR)和析氧反应(OER)是众多电化学储能技术的基石,包括燃料电池、水电解等。然而,ORR/OER过程均涉及多步质子/电子耦合传递,导致氧电极反应动力学缓慢且需要施加高活化过电位才可发生,因此探寻合适的电催化剂以降低反应势垒和加快电子传输是提高能量转化效率的关键。本文报道了一种双金属协同催化与界面工程耦合调控策略,该策略可通过聚乙烯吡咯烷酮(PVP)辅助热解将Co/Ni双金属MOF前驱体转化为钴镍合金纳米粒子嵌入的分级多孔碳材料(P-CoNi-N-C)。实验结果显示:P-CoNi-N-C具有几乎接近于Pt/C的ORR性能(起始电位为1.053 V,半波电位为0.825 V,电子转移数为3.96)和出色的OER性能(Ej=10为1.609 V,过电位为0.379 V,1.60 V电势下P-CoNi-N-C的质量活性为Co-N-C的5倍)。同样地,P-CoNi-N-C具有优异的长期稳定性,其电流衰减率仅为0.84% h-1。表征结果验证了P-CoNi-N-C优异的双功能活性源于其分级多孔结构、优化中间体吸附能和独特的异质界面结构的协同作用。此外,P-CoNi-N-C催化剂在可充电锌空气电池展现出优异的电化学性能(充电电流密度为127 mA·cm-2,功率密度为127.3 mW·cm-2)和循环稳定性(80 h后容量保持率为92%)。

关键词: 氧还原反应, 析氧反应, 金属有机框架, 分级多孔, 异质界面结构

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) occurring at bifunctional oxygen electrodes are fundamental to numerous electrochemical energy storage and conversion technologies, including fuel cells and water electrolysis. However, both ORR and OER involve multi-step proton-coupled electron transfers, resulting in sluggish reaction kinetics and requiring high activation overpotentials. Consequently, developing efficient electrocatalysts to lower the reaction energy barriers and accelerate electron transfer is critical for enhancing energy conversion efficiency. This work presents a synergistic strategy integrating bimetallic catalysis with interface engineering. Specifically, a cobalt/nickel bimetallic metal-organic framework (MOF) precursor undergoes polyvinylpyrrolidone (PVP)-assisted pyrolysis, transforming into a hierarchically porous nitrogen-doped carbon matrix embedded with cobalt-nickel alloy nanoparticles (P-CoNi-N-C). Electrochemical characterization reveals that P-CoNi-N-C exhibits ORR performance rivaling commercial Pt/C (onset potential of 1.053 V, half-wave potential of 0.825 V, and electron transfer number of 3.96) and exceptional OER activity (Ej=10 of 1.609 V, low overpotential of 0.379 V, and mass activity at 1.60 V that is 5 times higher than that of the Co-N-C). Similarly, P-CoNi-N-C has remarkable long-term stability with a current attenuation rate of only 0.84% h-1. Comprehensive material characterization confirms that the superior bifunctional performance of P-CoNi-N-C stems from the synergistic interplay of its hierarchically porous architecture, optimized adsorption energy for oxygen intermediates, and unique heterointerface structure. Furthermore, the P-CoNi-N-C catalyst exhibited excellent electrochemical performance (charge current density of 127 mA·cm-2 and power density of 127.3 mW·cm-2) and cycling stability (capacity retention rate of 92% after 80 h) in rechargeable zinc-air batteries.

Key words: Oxygen reduction reactions, Oxygen evolution reaction, Metal-organic frameworks, Graded porous, Heterogeneous interfacial structure