有机化学 ›› 2021, Vol. 41 ›› Issue (4): 1543-1550.DOI: 10.6023/cjoc202012009 上一篇 下一篇
研究论文
王小蝶1, 刘春玉1, 苗玲玲1, 薛冰洁1, 朱新举1, 宋冰1,*(), 郝新奇1,*(), 刘国际1
收稿日期:
2020-12-04
修回日期:
2020-12-07
发布日期:
2020-12-10
通讯作者:
宋冰, 郝新奇
基金资助:
Xiaodie Wang1, Chunyu Liu1, Lingling Miao1, Bingjie Xue1, Xinju Zhu1, Bing Song1,*(), Xinqi Hao1,*(), Guoji Liu1
Received:
2020-12-04
Revised:
2020-12-07
Published:
2020-12-10
Contact:
Bing Song, Xinqi Hao
About author:
Supported by:
文章分享
合成了一个含有手性对称三联吡啶配体的新型阳离子钌配合物, 并通过核磁共振、高分辨质谱和X射线单晶衍射确证了其结构. 该配合物在酮的氢转移中表现出较好的催化活性. 在最优条件下, 各种酮都可以在相对温和的条件下顺利通过氢化反应高效地生成相应的醇, 最高收率为99%.
王小蝶, 刘春玉, 苗玲玲, 薛冰洁, 朱新举, 宋冰, 郝新奇, 刘国际. 新型手性三联吡啶钌(II)配合物催化酮到醇的氢转移反应[J]. 有机化学, 2021, 41(4): 1543-1550.
Xiaodie Wang, Chunyu Liu, Lingling Miao, Bingjie Xue, Xinju Zhu, Bing Song, Xinqi Hao, Guoji Liu. Transfer Hydrogenation of Ketones into Alcohols Catalyzed by a Novel Chiral Terpyridine Ruthenium(II) Complex[J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1543-1550.
Atom-Atom | Length/nm | Atom-Atom-Atom | Angle/(°) |
---|---|---|---|
Cl(7)-Ru(3) | 0.2458 | N(3GA)-Ru(3)-Cl(7) | 176.3 |
N(1AA)-Ru(3) | 0.2074 | N(1AA)-Ru(3)-N(8GA) | 156.6 |
N(3GA)-Ru(3) | 0.1937 | P(5)-Ru(3)-P(6) | 179.1 |
N(8GA)-Ru(3) | 0.2129 | P(6)-Ru(3)-N(3GA) | 90.1 |
P(5)-Ru(3) | 0.2407 | N(1AA)-Ru(3)-N(3GA) | 78.2 |
P(6)-Ru(3) | 0.2412 | N(3AA)-Ru(3)-N(8GA) | 78.4 |
Atom-Atom | Length/nm | Atom-Atom-Atom | Angle/(°) |
---|---|---|---|
Cl(7)-Ru(3) | 0.2458 | N(3GA)-Ru(3)-Cl(7) | 176.3 |
N(1AA)-Ru(3) | 0.2074 | N(1AA)-Ru(3)-N(8GA) | 156.6 |
N(3GA)-Ru(3) | 0.1937 | P(5)-Ru(3)-P(6) | 179.1 |
N(8GA)-Ru(3) | 0.2129 | P(6)-Ru(3)-N(3GA) | 90.1 |
P(5)-Ru(3) | 0.2407 | N(1AA)-Ru(3)-N(3GA) | 78.2 |
P(6)-Ru(3) | 0.2412 | N(3AA)-Ru(3)-N(8GA) | 78.4 |
Entry | Base (equiv.) | Cat. 9/equiv. | Time/h | Yield/% |
---|---|---|---|---|
1 | Na2CO3 (0.1) | 0.01 | 3 | 23 |
2 | KHCO3 (0.1) | 0.01 | 3 | 47 |
3 | K3PO4 (0.1) | 0.01 | 3 | 74 |
4 | NaOAc (0.1) | 0.01 | 3 | N.R |
5 | NaOH (0.1) | 0.01 | 3 | 79 |
6 | EtONa (0.1) | 0.01 | 3 | 87 |
7 | EtONa (0) | 0.01 | 3 | N.R |
8 | EtONa (0.05) | 0.01 | 3 | 81 |
9 | EtONa (0.2) | 0.01 | 3 | 78 |
10 | EtONa (0.1) | 0.003 | 3 | 62 |
11 | EtONa (0.1) | 0.005 | 3 | 82 |
12 | EtONa (0.1) | 0.03 | 3 | 79 |
13 | EtONa (0.1) | 0.05 | 3 | 66 |
14 | EtONa (0.1) | 0.01 | 2 | 82 |
15 | EtONa (0.1) | 0.01 | 4 | 65 |
Entry | Base (equiv.) | Cat. 9/equiv. | Time/h | Yield/% |
---|---|---|---|---|
1 | Na2CO3 (0.1) | 0.01 | 3 | 23 |
2 | KHCO3 (0.1) | 0.01 | 3 | 47 |
3 | K3PO4 (0.1) | 0.01 | 3 | 74 |
4 | NaOAc (0.1) | 0.01 | 3 | N.R |
5 | NaOH (0.1) | 0.01 | 3 | 79 |
6 | EtONa (0.1) | 0.01 | 3 | 87 |
7 | EtONa (0) | 0.01 | 3 | N.R |
8 | EtONa (0.05) | 0.01 | 3 | 81 |
9 | EtONa (0.2) | 0.01 | 3 | 78 |
10 | EtONa (0.1) | 0.003 | 3 | 62 |
11 | EtONa (0.1) | 0.005 | 3 | 82 |
12 | EtONa (0.1) | 0.03 | 3 | 79 |
13 | EtONa (0.1) | 0.05 | 3 | 66 |
14 | EtONa (0.1) | 0.01 | 2 | 82 |
15 | EtONa (0.1) | 0.01 | 4 | 65 |
[1] |
(a) Trost, B.M.; Fleming, I. Comprehensive Organic Synthesis, Vol. 8, Pergamon, Oxford, U.K., 1991, Chapters 1.1~1.8.
|
(b) Hudlicky, M. Reductions in Organic Chemistry, 2nd ed., The American Chemical Society, Washington, DC, 1996.
|
|
[2] |
(a) Gunanathan, C.; Milstein, D. Science 2013, 341,249.
pmid: 29319294 |
(b) Ito, J.-I.; Nishiyama, H. Tetrahedron Lett. 2014, 55,3133.
pmid: 29319294 |
|
(c) Nandakumar, A.; Midya, S.P.; Landge, V.G.; Balaraman, E. Angew. Chem., nt. Ed. 2015, 54,11022.
pmid: 29319294 |
|
(d) Wang, D.; Astruc, D. Chem. Rev. 2015, 115,6621.
pmid: 29319294 |
|
(e) Ma, X.; Su, C.; Xu, Q. Top. Curr. Chem. 2016, 374,27.
pmid: 29319294 |
|
(f) Wang, C.; Xiao, J. Chem. Commun. 2017, 53,3399.
pmid: 29319294 |
|
(g) Corma, A.; Navas, J.; Sabater, M.J. Chem. Rev. 2018, 118,1410.
doi: 10.1021/acs.chemrev.7b00340 pmid: 29319294 |
|
(h) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119,2524.
pmid: 29319294 |
|
[3] |
(a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30,97.
|
(b) Noyori, R.; Ohkuma, T. Angew. Chem., nt. Ed. 2001, 40,40.
|
|
(c) Noyori, R. Angew. Chem., nt. Ed. 2002, 41,2008.
|
|
[4] |
(a) Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P. Angew. Chem., nt. Ed. 2008, 47,4362.
pmid: 25650714 |
(b) Putignano, E.; Bossi, G.; Rigo, P.; Baratta, W. Organometallics 2012, 31,1133.
pmid: 25650714 |
|
(c) Chelucci, G.; Baldino, S.; Baratta, W. Acc. Chem. Res. 2015, 48,363.
doi: 10.1021/ar5003818 pmid: 25650714 |
|
[5] |
(a) Morris, R.H. Chem. Soc. Rev. 2009, 38,2282.
pmid: 25897779 |
(b) Zuo, W.; Lough, A.J.; Li, Y.F.; Morris, R.H. Science 2013, 342,1080.
doi: 10.1126/science.1244466 pmid: 25897779 |
|
(c) Morris, R.H. Acc. Chem. Res. 2015, 48,1494.
doi: 10.1021/acs.accounts.5b00045 pmid: 25897779 |
|
(d) Seo, C.S. G.; Morris, R.H. Organometallics 2019, 38,47.
pmid: 25897779 |
|
[6] |
(a) Gunanathan, C.; Milstein, D. Chem. Rev. 2014, 114,12024.
doi: 10.1021/cr5002782 pmid: 30596420 |
(b) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Chem.-Eur. J. 2015, 21,12226.
pmid: 30596420 |
|
(c) Kumar, A.; Bhatti, T.M.; Goldman, A.S. Chem. Rev. 2017, 117,12357.
pmid: 30596420 |
|
(d) Alig, L.; Fritz, M.; Schneider, S. Chem. Rev. 2019, 119,2681.
doi: 10.1021/acs.chemrev.8b00555 pmid: 30596420 |
|
[7] |
(a) Dani, P.; Karlen, T.; Gossage, R.A.; Gladiali, S.; van Koten, G. Angew. Chem., nt. Ed. 2000, 39,743.
|
(b) Ito, J.-I.; Teshima, T.; Nishiyama, H. Chem. Commun. 2012, 48,1105.
|
|
(c) Valdes, H.; Gonzalez-Sebastian, L.; Morales-Morales, D. J. Organomet. Chem. 2017, 845,229.
|
|
[8] |
(a) Amoroso, D.; Jabri, A.; Yap, G.P. A.; Gusev, D.G.; dos Santos, E.N.; Fogg, D.E. Organometallics 2004, 23,4047.
|
(b) Gagliardo, M.; Chase, P.A.; Brouwer, S.; Van Klink, G.P. M.; van Koten, G. Organometallics 2007, 26,2219.
|
|
(c) Azerraf, C.; Gelman, D. Chem.-Eur. J. 2008, 14,10364.
|
|
[9] |
Du, W.; Wang, L.; Wu, P.; Yu, Z. Chem.-Eur. J. 2012, 18,11550.
doi: 10.1002/chem.201201938 pmid: 22887575 |
[10] |
Zhang, G.; Hanson, S.K. Chem. Commun. 2013, 49,10151.
|
[11] |
(a) He, L.-P.; Chen, T.; Xue, D.-X.; Eddaoudi, M.; Huang, K.-W. J. Organomet. Chem. 2012, 700,202.
|
(b) Fuentes, J.A.; Carpenter, I.; Kann, N.; Clarke, M.L. Chem. Commun. 2013, 49,10245.
|
|
[12] |
(a) Kannan, S.; Ramesh, P.; Liu, Y. J. Organomet. Chem. 2007, 692,3380.
|
(b) Maclnnis, M.C.; Maclean, D.F.; Lundgren, R.J.; McDonald, R.; Turculet, L. Organometallics 2007, 26,6522.
|
|
[13] |
(a) Kannan, S.; Ramesh, P.; Liu, Y. J. Organomet. Chem. 2007, 692,3380.
pmid: 33790689 |
(b) Maclnnis, M.C.; Maclean, D.F.; Lundgren, R.J.; McDonald, R.; Turculet, L. Organometallics 2007, 26,6522.
pmid: 33790689 |
|
(c) Qiu, Y.; Zhang, Y.; Jin, L.; Pan, L.; Du, G.; Ye, D.; Wang, D. Org. Chem. Front. 2019, 6,3420.
pmid: 33790689 |
|
(d) Xu, Z.; Wang, D.; Yu, X.; Yang, Y.; Wang, D. Adv. Synth. Catal. 2017, 359,3332.
pmid: 33790689 |
|
(e) Yao, W.; Duan, Z.; Zhang, Y.; Sang, X.; Xia, X.; Wang, D. Adv. Synth. Catal. 2019, 361,5695.
pmid: 33790689 |
|
(f) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21,5345.
pmid: 33790689 |
|
(g) Yang, Q.; Zhang, Y.; Zeng, W.; Duan, Z.; Sang, X.; Wang, D. Green Chem. 2019, 21,5683.
pmid: 33790689 |
|
(h) Yao, W.; Zhang, Y.; Zhu, H.; Wang, D. Chin. Chem. Lett. 2020, 31,701.
pmid: 33790689 |
|
(i) Tao, R.; Yang, Y.; Zhu, H.; Hu, X.; Wang, D. Green Chem. 2020, 22, DOI: 10.1039/d0gc02341h.
pmid: 33790689 |
|
(j) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4,3910.
pmid: 33790689 |
|
(k) Ye, D.; Huang, R.; Zhu, H.; Zou, L.-H.; Wang, D. Org. Chem. Front. 2019, 6,62.
pmid: 33790689 |
|
(l) Wu, Q.; Pan, L.; Du, G.; Zhang, C.; Wang, D. Org. Chem. Front. 2018, 5,2668.
pmid: 33790689 |
|
(m) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35,676. (in Chinese)
pmid: 33790689 |
|
( 王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35,676.)
pmid: 33790689 |
|
[14] |
Cuervo, D.; Gamasa, M.P.; Gimeno, J. Chem.-Eur. J. 2004, 23,425.
|
[15] |
Enthaler, S.; Hagemann, B.; Bhor, S.; Anilkumar, G.; Tse, M.K.; Bitterlich, B.; Junge, K.; Erre, G.; Beller, M. Adv. Synth. Catal. 2007, 349,853.
|
[16] |
(a) Moore, C.M.; Szymczak, N.K. Chem. Commun. 2013, 49,400.
|
(b) Shi, J.; Hu, B.; Gong, D.; Shang, S.; Hou, G.; Chen, D. Dalton Trans. 2016, 45,4828.
|
|
[17] |
(a) Ye, W.; Zhao, M.; Du, W.; Jiang, Q.; Wu, K.; Wu, P.; Yu, Z. Chem.-Eur. J. 2011, 17,4737.
doi: 10.1002/chem.201002039 pmid: 21404339 |
(b) Ye, W.; Zhao, M.; Yu, Z. Chem.-Eur. J. 2012, 18,10843.
pmid: 21404339 |
|
(c) Jin, W.; Wang, L.; Yu, Z. Organometallics 2012, 31,5664.
pmid: 21404339 |
|
(d) Du, W.; Wu, P.; Wang, Q.; Yu, Z. Organometallics 2013, 32,308.
pmid: 21404339 |
|
(e) Du, W.; Wang, Q.; Wang, L.; Yu, Z. Organometallics 2014, 33,974.
pmid: 21404339 |
|
(f) Chai, H.; Liu, T.; Wang, Q.; Yu, Z. Organometallics 2015, 34,5278.
pmid: 21404339 |
|
(g) Liu, T.; Chai, H.; Wang, L.; Yu, Z. Organometallics 2017, 36,2914.
pmid: 21404339 |
|
(h) Wang, Q.; Chai, H.; Yu, Z. Organometallics 2017, 36,3638.
pmid: 21404339 |
|
(i) Chai, H.; Liu, T.; Yu, Z. Organometallics 2017, 36,4136.
pmid: 21404339 |
|
(j) Chai, H.; Liu, T.; Zheng, D.; Yu, Z. Organometallics 2017, 36,4268.
pmid: 21404339 |
|
[18] |
(a) Yan, J.; Wang, Y.-B.; Zhu, Z.-H.; Li, Y.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Organometallics 2018, 37,2325.
|
(b) Wang, Y.-B.; Liu, Y.-X.; Zhu, Z.-H.; Zhao, X.-M.; Song, B.; Zhu, X.; Hao, X.-Q. J. Saudi Chem. Soc. 2019, 23,104.
|
|
(c) Zhu, Z.-H.; Li, Y.; Wang, Y.-B.; Lan, Z.-G.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Organometallics 2019, 38,2156.
|
|
[19] |
(a) Li, K.; Niu, J.-L.; Yang, M.-Z.; Li, Z.; Wu, L.-Y.; Hao, X.-Q.; Song, M.-P. Organometallics 2015, 34,1170.
pmid: 29533663 |
(b) Yang, F.-L.; Zhu, X.; Rao, D.-K.; Cao, X.-N.; Li, K.; Xu, Y.; Hao, X.-Q.; Song, M.-P. RSC Adv. 2016, 6,37093.
pmid: 29533663 |
|
(c) Yang, F.-L.; Wang, Y.-H.; Ni, Y.-F.; Gao, X.; Song, B.; Zhu, X.; Hao, X.-Q. Eur. J. Org. Chem. 2017, 2017,3481.
pmid: 29533663 |
|
(d) Cao, X.-N.; Wan, X.-M.; Yang, F.-L.; Li, K.; Hao, X.-Q.; Shao, T.; Zhu, X.; Song, M.-P. J. Org. Chem. 2018, 83,3657.
doi: 10.1021/acs.joc.8b00013 pmid: 29533663 |
|
(e) Wan, X.-M.; Liu, Z.-L.; Liu, W.-Q.; Cao, X.-N.; Zhu, X.; Zhao, X.-M.; Song, B.; Hao, X.-Q.; Liu, G. Tetrahedron 2019, 75,2697.
pmid: 29533663 |
|
[20] |
(a) Kröhnke, F.; Zecher, W.; Curtze, J.; Drechsler, D.; Pfleghar, K.; Schnalke, K.E.; Weis, C.W. Angew. Chem., nt. Ed. 1962, 1,626.
|
(b) Ziegler, M.; Monney, V.; Stoeckli-Evans, H.; Zelewsky, A.V.; Sasaki, I.; Dupic, G.; Daran, J.-C.; Balavoine, G.G. A. J. Chem. Soc., alton Trans. 1999,667.
|
|
(c) Kwong, H.-L.; Lee, W.-S. Tetrahedron: Asymmetry 2000, 11,2299.
|
|
(d) Kwong, H.-L.; Wong, W.-L.; Lee, W.-S.; Cheng, L.-S.; Wong, W.-T. Tetrahedron: Asymmetry 2001, 12,2683.
doi: 10.1016/S0957-4166(01)00431-1 |
|
(e) Yeung, C.-T.; Lee, W.-S.; Tsang, C.-S.; Yiu, S.-M.; Wong, W.-T.; Wong, W.-Y.; Kwong, H.-L. Polyhedron 2010, 29,1497. 9f4792cc-0a81-4a51-87d5-25fbd71954fd
doi: 10.1016/j.poly.2010.01.017 |
|
[21] |
(a) Wang, M.; Wang, C.; Hao, X.-Q.; Li, X.; Vaughn, T.J.; Zhang, Y.-Y.; Yu, Y.; Li, Z.-Y.; Song, M.-P.; Yang, H.-B.; Li, X. J. Am. Chem. Soc. 2014, 136,10499. c122bda4-0566-453f-8ded-a52965695c56
doi: 10.1021/ja505414x pmid: 30289702 |
(b) Wang, L.; Liu, R.; Gu, J.; Song, B.; Wang, H.; Jiang, X.; Zhang, K.; Han, X.; Hao, X.-Q.; Bai, S.; Wang, M.; Li, X.; Xu, B.; Li, X. J. Am. Chem. Soc. 2018, 140,14087.
doi: 10.1021/jacs.8b05530 pmid: 30289702 |
|
[22] |
(a) Zhao, H.-Q.; Ong, W.-Q.; Fang, X.; Zhou, F.; Su, H.-B.; Zeng, H.-Q. Org. Biomol. Chem. 2012, 10,1172.
doi: 10.1039/c1ob06609a pmid: 29121772 |
(b) Ramogida, C.F.; Schindler, D.; Schneider, C.; Tan, Y.L. K.; Huh, S.; Ferreira, C.L.; Adam, M.J.; Orvig, C. RSC Adv. 2016, 6,103763.
doi: 10.1039/C6RA24070D pmid: 29121772 |
|
(c) Gygi, D.; Hwang, S.J.; D.; Nocera, G. J. Org. Chem. 2017, 82,12933.
doi: 10.1021/acs.joc.7b02571 pmid: 29121772 |
[1] | 欧世国, 柴瑞瑞, 李家豪, 王大伟, 桑欣欣. 金属-有机框架衍生的植酸铁催化氢转移高效制备2-芳基苯并噁唑[J]. 有机化学, 2023, 43(8): 2934-2945. |
[2] | 蒋滨阳, 施世良. 醇与胺的不对称脱氢偶联升级反应研究进展[J]. 有机化学, 2022, 42(10): 3263-3279. |
[3] | 张宇轩, 许立民, 卢岩, 张兆国. 二酮的不对称催化还原反应研究进展[J]. 有机化学, 2022, 42(10): 3221-3239. |
[4] | 张齐英, 张一铭, 郝二军, 白娟, 渠桂荣, 郭海明. 通过不对称氢转移/动态动力学拆分合成碳环N3-嘌呤核苷[J]. 有机化学, 2020, 40(2): 376-383. |
[5] | 刘涛, 屈川华, 谢劲, 朱成建. 光诱导原子经济的迭代型末端炔烃氢三氟甲基化和远程C(sp3)-H键官能团化[J]. 有机化学, 2019, 39(6): 1613-1622. |
[6] | 陈晓玲, 陈静雯, 鲍宗必, 杨启炜, 杨亦文, 任其龙, 张治国. MIL-101(Cr)-SO3H催化2-取代喹啉衍生物转移氢化反应的研究[J]. 有机化学, 2019, 39(6): 1681-1687. |
[7] | 李小娜, 王丽华, 周宏勇, 王家喜. 手性氨基酸衍生物-钌配合物催化的酮不对称氢转移反应[J]. 有机化学, 2016, 36(9): 2175-2182. |
[8] | 刘兵, 周宏勇, 李云庆, 王家喜. 壳聚糖酯钌络合物催化苯乙酮的不对称氢转移反应[J]. 有机化学, 2014, 34(12): 2554-2558. |
[9] | 吴琼, 吴剑, 梅文杰, 姚骏骅, 吴韦黎, 陈燕华, 陶韵伊. 微波辅助合成芳烃钌(II)配合物[(η6-RC6H5)Ru(m-MOPIP)Cl]Cl[J]. 有机化学, 2013, 33(9): 2022-2027. |
[10] | 高艳炫, 周宏勇, 李云庆, 王家喜. 氮杂环卡宾的合成及在氢转移反应中的应用[J]. 有机化学, 2012, 32(08): 1493-1497. |
[11] | 段凯, 李小娜, 李云庆, 王家喜. 氨基取代的苯并咪唑衍生物的合成及在酮的氢转移反应中的应用[J]. 有机化学, 2012, 32(07): 1247-1254. |
[12] | 李小娜, 张鹏亮, 段凯, 王家喜. 手性氨基酸及其衍生物配体在酮不对称氢转移反应中的应用进展[J]. 有机化学, 2012, 32(01): 19-29. |
[13] | 张鹏亮, 李小娜, 周宏勇, 李云庆, 王家喜. 新型N-P配体的合成、表征及其在氢转移反应中的应用[J]. 有机化学, 2011, 31(9): 1406-1410. |
[14] | 刘培念, 陈应春, 邓金根, 涂永强. 树状催化剂在不对称氢转移反应中的回收循环使用研究[J]. 有机化学, 2005, 25(05): 598-600. |
[15] | 李国平,江焕峰,李金恒. 一种高效、洁净的还原醛的新方法[J]. 有机化学, 2002, 22(6): 433-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||