有机化学 ›› 2021, Vol. 41 ›› Issue (9): 3349-3365.DOI: 10.6023/cjoc202105016 上一篇 下一篇
综述与进展
收稿日期:
2021-05-10
修回日期:
2021-05-31
发布日期:
2021-06-29
通讯作者:
刘建超
基金资助:
Received:
2021-05-10
Revised:
2021-05-31
Published:
2021-06-29
Contact:
Jianchao Liu
Supported by:
文章分享
过渡金属催化的C(sp2)—C(sp3)交叉偶联在有机合成中具有重要意义, 可用于合成复杂天然产物和药物分子. 近年来, 还原Heck反应已发展成为构筑C(sp2)—C(sp3)键的简洁、高效方法之一. 根据参与反应的氢供体类型不同, 综述了近十年来烯烃参与还原Heck反应的研究进展. 对其作用机理进行了阐述, 并对该领域的未来发展进行了展望.
肖霄, 刘建超. 烯烃参与的还原Heck反应构建C(sp2)—C(sp3)键研究进展[J]. 有机化学, 2021, 41(9): 3349-3365.
Xiao Xiao, Jianchao Liu. Progress in the Synthesis of C(sp2)—C(sp3) Bond by Reductive Heck Reactions of Alkenes[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3349-3365.
[1] |
Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
doi: 10.1021/jm901241e pmid: 19827778 |
[2] |
(a) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
doi: 10.1002/anie.200803611 pmid: 32292569 |
(b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
doi: 10.1021/cr100327p pmid: 32292569 |
|
(c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
doi: 10.1021/acs.chemrev.5b00162 pmid: 32292569 |
|
(d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333.
doi: 10.1021/acs.chemrev.6b00574 pmid: 32292569 |
|
(e) Dong, X.; Hou, Y.; Meng, F.; Liu, H.; Liu, H. Chin. J. Org. Chem. 2017, 37, 1088. (in Chinese).
doi: 10.6023/cjoc201702040 pmid: 32292569 |
|
( 董旭, 侯永正, 孟凡威, 刘洪波, 刘会, 有机化学, 2017, 37, 1088.)
pmid: 32292569 |
|
(f) Dombrowski, A. W.; Gesmundo, N. J.; Aguirre, A. L.; Sarris, K. A.; Young, J. M.; Bogdan, A. R.; Martin, M. C.; Gedeon, S.; Wang, Y. ACS Med. Chem. Lett. 2020, 11, 597.
doi: 10.1021/acsmedchemlett.0c00093 pmid: 32292569 |
|
[3] |
(a) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
doi: 10.1021/cr100371y pmid: 21428440 |
(b) Coombs, J. R.; Morken, J. P. Angew. Chem., Int. Ed. 2016, 55, 2636.
doi: 10.1002/anie.201507151 pmid: 21428440 |
|
(c) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
doi: 10.1021/acs.accounts.6b00328 pmid: 21428440 |
|
(d) Zhang, J. S.; Liu, L.; Chen, T.; Han, L. B. Chem.-Asian J. 2018, 13, 2277.
doi: 10.1002/asia.201800647 pmid: 21428440 |
|
(e) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32.
doi: 10.1039/C9CS00681H pmid: 21428440 |
|
(f) Li, Y.; Wu, D.; Cheng, H.; Yin, G. Angew. Chem., Int. Ed. 2020, 59, 7990.
doi: 10.1002/anie.v59.21 pmid: 21428440 |
|
[4] |
Cacchi, S.; Arcadi, A. J. Org. Chem. 1983, 48, 4236.
doi: 10.1021/jo00171a016 |
[5] |
Diaz, P.; Gendre, F.; Stella, L.; Charpentier, B. Tetrahedron 1998, 54, 4579.
doi: 10.1016/S0040-4020(98)00169-0 |
[6] |
(a) Yang, X.; Ma, S.; Du, Y.; Tao, Y. Chin. J. Org. Chem. 2013, 33, 2325. (in Chinese).
doi: 10.6023/cjoc201303053 pmid: 23688190 |
( 杨晓梅, 马莎, 杜艳妮, 陶云海, 有机化学, 2013, 33, 2325.)
pmid: 23688190 |
|
(b) Diethelm, S.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 8500.
doi: 10.1021/ja403823n pmid: 23688190 |
|
(c) Oxtoby, L. J.; Gurak, J. A. Jr.; Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M. Trends Chem. 2019, 1, 572.
doi: 10.1016/j.trechm.2019.05.007 pmid: 23688190 |
|
(d) Ghosh, T. ChemistrySelect 2019, 4, 4747.
doi: 10.1002/slct.v4.16 pmid: 23688190 |
|
(e) Xie, J.-Q.; Liang, R.-X.; Jia, Y.-X. Chin. J. Chem. 2021, 39, 710.
doi: 10.1002/cjoc.v39.3 pmid: 23688190 |
|
[7] |
(a) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
doi: 10.1021/jo00979a024 pmid: 11749313 |
(b) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.
doi: 10.1021/ar00049a001 pmid: 11749313 |
|
(c) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
pmid: 11749313 |
|
[8] |
Chen, J.-Q.; Xie, J.-H.; Bao, D.-H.; Liu, S.; Zhou, Q.-L. Org. Lett. 2012, 14, 2714.
doi: 10.1021/ol300913g |
[9] |
Pu, L.-Y.; Chen, J.-Q.; Li, M.-L.; Li, Y.; Xie, J.-H.; Zhou, Q.-L. Adv. Synth. Catal. 2016, 358, 1229.
doi: 10.1002/adsc.v358.8 |
[10] |
Peng, R.; Van Nieuwenhze, M. S. Org. Lett. 2012, 14, 1962.
doi: 10.1021/ol300072h |
[11] |
Peng, R.; Van Nieuwenhze, M. S. J. Org. Chem. 2019, 84, 173.
doi: 10.1021/acs.joc.8b02575 |
[12] |
(a) Ichikawa, M.; Takahashi, M.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2004, 126, 16553.
pmid: 29589936 |
(b) Okamura, H.; Mori, N.; Watanabe, H.; Takikawa, H. Tetrahedron Lett. 2018, 59, 4397.
doi: 10.1016/j.tetlet.2018.10.066 pmid: 29589936 |
|
(c) Zheng, Y.; Yue, B.-B.; Wei, K.; Yang, Y.-R. J. Org. Chem. 2018, 83, 4867.
doi: 10.1021/acs.joc.8b00529 pmid: 29589936 |
|
[13] |
Gao, P. G.; Cook, S. P. Org. Lett. 2012, 14, 3340.
doi: 10.1021/ol3013167 |
[14] |
Liu, S.; Zhou, J. Chem. Commun. 2013, 49, 11758.
doi: 10.1039/c3cc47551d |
[15] |
(a) Arcadi, A.; Marinelli, F.; Bernocchi, E.; Cacchi, S.; Ortar, G. J. Organomet. Chem. 1989, 368, 249.
doi: 10.1016/0022-328X(89)85320-3 pmid: 20657489 |
(b) Kasyan, A.; Wagner, C.; Maier, M. E. Tetrahedron 1998, 54, 8047.
doi: 10.1016/S0040-4020(98)00443-8 pmid: 20657489 |
|
(c) Namyslo, J. C.; Kaufmann, D. E. Synlett 1999, 6, 804.
pmid: 20657489 |
|
(d) Carroll, F. I.; Liang, F.; Navarro, H. A.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2001, 44, 2229.
pmid: 20657489 |
|
(e) Yao, M.-L.; Adiwidjaja, G.; Kaufmann, D. E. Angew. Chem., Int. Ed. 2002, 41, 3375.
doi: 10.1002/1521-3773(20020916)41:18【-逻*辑*与-】#x00026;lt;3375::AID-ANIE3375【-逻*辑*与-】#x00026;gt;3.0.CO;2-H pmid: 20657489 |
|
(f) Namyslo, J. C.; Storsberg, J.; Klinge, J.; Gärtner, C.; Yao, M.-L.; Ocal, N.; Kaufmann, D. E. Molecules 2010, 15, 3402.
doi: 10.3390/molecules15053402 pmid: 20657489 |
|
(g) Jana, G. K.; Sinha, S. Tetrahedron Lett. 2012, 53, 1671.
doi: 10.1016/j.tetlet.2012.01.097 pmid: 20657489 |
|
(h) Aida, F.; Sone, H.; Ogawa, R.; Hamaoka, T.; Shimizu, I. Chem. Lett. 2015, 44, 715.
doi: 10.1246/cl.150099 pmid: 20657489 |
|
[16] |
Vijayan, A.; Jumaila, C. U.; Baiju, T. V.; Radhakrishnan, K. V. ChemistrySelect 2017, 2, 5913.
doi: 10.1002/slct.201701152 |
[17] |
Shen, C.; Liu, R.-R.; Fan, R.-J.; Li, Y. -, L.; Xu, T.-F.; Gao, J.-R.; Jia, Y.-X. J. Am. Chem. Soc. 2015, 137, 4936.
doi: 10.1021/jacs.5b01705 |
[18] |
Liu, R.-R.; Xu, Y.; Liang, R.-X.; Xiang, B.; Xie, H.-J.; Gao, J.-R.; Jia, Y.-X. Org. Biomol. Chem. 2017, 15, 5790.
doi: 10.1039/C7OB01237C |
[19] |
Saini, V.; O'Dair, M.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 608.
doi: 10.1021/ja511640g |
[20] |
Dou, Y.; Yang, L.; Zhang, L.; Zhang, P.; Li, H.; Yang, G. RSC Adv. 2016, 6, 100632.
doi: 10.1039/C6RA22310A |
[21] |
Hou, L.; Yuan, Y.; Tong, X. Org. Biomol. Chem. 2017, 15, 4803.
doi: 10.1039/C7OB00762K |
[22] |
Liang, R.-X.; Yang, R.-Z.; Liu, R.-R.; Jia, Y.-X. Org. Chem. Front. 2018, 5, 1840.
doi: 10.1039/C8QO00205C |
[23] |
Vargas, D. R.; Cook, S. P. Tetrahedron 2018, 74, 3314.
doi: 10.1016/j.tet.2018.04.052 |
[24] |
Gurak, J. A. Jr.; Engle, K. M. ACS Catal. 2018, 8, 8987.
doi: 10.1021/acscatal.8b02717 pmid: 30393575 |
[25] |
Heck, R. F. Acc. Chem. Res. 1979, 12, 146.
doi: 10.1021/ar50136a006 |
[26] |
Oxtoby, L. J.; Li, Z.-Q.; Tran, V. T.; Erbay, T. G.; Deng, R.; Liu, P.; Engle, K. M. Angew. Chem., Int. Ed. 2020, 59, 8885.
doi: 10.1002/anie.v59.23 |
[27] |
Zhang, Z.-M.; Xu, B.; Qian, Y.; Wu, L.; Wu, Y.; Zhou, L.; Liu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2018, 57, 10373.
doi: 10.1002/anie.v57.32 |
[28] |
Diaz, P.; Phatak, S. S.; Xu, J.; Fronczek, F. R.; Astruc-Diaz, F.; Thompson, C. M.; Cavasotto, C. N.; Naguib, M. ChemMedChem 2009, 4, 1615.
doi: 10.1002/cmdc.v4:10 |
[29] |
Yuan, Z.; Feng, Z.; Zeng, Y.; Zhao, X.; Lin, A.; Yao, H. Angew. Chem., Int. Ed. 2019, 58, 2884.
doi: 10.1002/anie.v58.9 |
[30] |
Peng, X.; Yang, Y.; Luo, B.; Wen, S.; Huang, P. Adv. Synth. Catal. 2021, 363, 222.
doi: 10.1002/adsc.v363.1 |
[31] |
Han, M.-L.; Huang, W.; Liu, Y.-W.; Liu, M.; Xu, H.; Xiong, H.; Dai, H.-X. Org. Lett. 2021, 23, 172.
doi: 10.1021/acs.orglett.0c03897 |
[32] |
Murahashi, S.-I.; Watanabe, T. J. Am. Chem. Soc. 1979, 101, 7429.
doi: 10.1021/ja00518a062 |
[33] |
Minatti, A.; Zheng, X. L.; Buchwald, S. L. J. Org. Chem. 2007, 72, 9253.
pmid: 17967034 |
[34] |
Gottumukkala, A. L.; de Vries, J. G.; Minnaard, A. J. Chem.-Eur. J. 2011, 17, 3091.
doi: 10.1002/chem.201003643 pmid: 21305628 |
[35] |
Raoufmoghaddam, S.; Mannathan, S.; Minnaard, A. J.; de Vries, J. G.; Reek, J. N. H. Chem.-Eur. J. 2015, 21, 18811.
doi: 10.1002/chem.201503217 pmid: 26561034 |
[36] |
Mannathan, S.; Raoufmoghaddam, S.; Reek, J. N. H.; de Vries, J. G.; Minnaard, A. J. ChemCatChem 2015, 7, 3923.
doi: 10.1002/cctc.201500760 |
[37] |
Yue, G.; Lei, K.; Hirao, H.; Zhou, J. Angew. Chem., Int. Ed. 2015, 54, 6531.
doi: 10.1002/anie.201501712 |
[38] |
Mannathan, S.; Raoufmoghaddam, S.; Reek, J. N. H.; de Vries, J. G.; Minnaard, A. J. ChemCatChem 2017, 9, 551.
doi: 10.1002/cctc.v9.4 |
[39] |
Balanta, A.; Godard, C.; Claver, C. Chem. Soc. Rev. 2011, 40, 4973.
doi: 10.1039/c1cs15195a |
[40] |
Parveen, N.; Saha, R.; Sekar, G. Adv. Synth. Catal. 2017, 359, 3741.
doi: 10.1002/adsc.v359.21 |
[41] |
Parveen, N.; Sekar, G. Adv. Synth. Catal. 2019, 361, 4581.
doi: 10.1002/adsc.201900752 |
[42] |
(a) Broccatelli, F.; Cruciani, G.; Benet, L. Z.; Oprea, T. I. Mol. Pharmaceutics 2012, 9, 570.
doi: 10.1021/mp2004302 |
(b) Cha, J.-Y.; Park, J.-M.; Lee, H.-J.; Bae, J.-S.; Han, Y.-M; Oh, B.-C.; Ko, K. H.; Hahm, K.-B. Curr. Pharm. Des. 2017, 23, 3941.
|
|
[43] |
Wang, C.; Xiao, G.; Guo, T.; Ding, Y.; Wu, X.; Loh, T.-P. J. Am. Chem. Soc. 2018, 140, 9332.
doi: 10.1021/jacs.8b03619 |
[44] |
(a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
doi: 10.1021/ja054549f pmid: 20175511 |
(b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
doi: 10.1021/ja910900p pmid: 20175511 |
|
(c) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
doi: 10.1021/ar5004626 pmid: 20175511 |
|
[45] |
Ozeryanskii, V. A.; Gorbacheva, A. Y.; Pozharskii, A. F.; Vlasenko, M. P.; Tereznikov, A. Y.; Chernov'yants, M. S. Org. Biomol. Chem. 2015, 13, 8524
doi: 10.1039/c5ob01065a pmid: 26159785 |
[46] |
Guo, T.; Ding, Y.; Zhou, L.; Xu, H.; Loh, T.-P.; Wu, X. ACS Catal. 2020, 10, 7262.
doi: 10.1021/acscatal.0c02414 |
[47] |
Harrington, P. J.; Lodewijk, E. Org. Process Res. Dev. 1997, 1, 72.
doi: 10.1021/op960009e |
[48] |
Raoufmoghaddam, S.; Mannathan, S.; Minnaard, A. J.; de Vries, J. G.; de Bruin, B.; Reek, J. N. H. ChemCatChem 2018, 10, 266.
doi: 10.1002/cctc.v10.1 |
[49] |
Jin, L.; Qian, J.; Sun, N.; Hu, B.; Shen, Z.; Hu, X. Chem. Commun. 2018, 54, 5752.
doi: 10.1039/C8CC02571A |
[50] |
Zheng, K.; Xiao, G.; Guo, T.; Ding, Y.; Wang, C.; Loh, T.-P.; Wu, X. Org. Lett. 2020, 22, 694.
doi: 10.1021/acs.orglett.9b04474 |
[51] |
(a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A. M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
doi: 10.1021/cr100259t pmid: 21133429 |
(b) Diccianni, J.; Lin, Q.; Diao, T. Acc. Chem. Res. 2020, 53, 906.
doi: 10.1021/acs.accounts.0c00032 pmid: 21133429 |
|
(c) Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542.
doi: 10.1021/acscatal.0c02115 pmid: 21133429 |
|
[52] |
Yang, F.; Jin, Y.; Wang, C. Org. Lett. 2019, 21, 6989.
doi: 10.1021/acs.orglett.9b02577 |
[53] |
Li, Y.; Gong, J.-F.; Song, M.-P. Org. Chem. Front. 2020, 7, 2216.
doi: 10.1039/D0QO00428F |
[54] |
Yang, X.-W.; Li, D.-H.; Song, A.-X.; Liu, F.-S. J. Org. Chem. 2020, 85, 11750.
doi: 10.1021/acs.joc.0c01509 |
[55] |
Kong, W.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2017, 56, 3987.
doi: 10.1002/anie.201700195 |
[56] |
Qin, X. R.; Lee, M. W. Y.; Zhou, J. S. Angew. Chem., Int. Ed. 2017, 56, 12723.
doi: 10.1002/anie.v56.41 |
[57] |
Qin, X.; Lee, M. W. Y.; Zhou, J. S. Org. Lett. 2019, 21, 5990.
doi: 10.1021/acs.orglett.9b02130 |
[58] |
Huang, X.; Teng, S.; Chi, Y. R.; Xu, W.; Pu, M.; Wu, Y.-D.; Zhou, J. S. Angew. Chem., Int. Ed. 2021, 60, 2828.
doi: 10.1002/anie.v60.6 |
[1] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[2] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[3] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[4] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[5] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[6] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[7] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[8] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[9] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[10] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[11] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[12] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[13] | 梁志鹏, 叶浩, 张海滨, 姜国民, 吴新星. 环丁酮类腙参与的偕二氟环丙烷开环胺化反应[J]. 有机化学, 2023, 43(4): 1483-1491. |
[14] | 张妍妍, 张珠珠, 朱圣卿, 储玲玲. 镍催化不对称酰基化反应研究进展[J]. 有机化学, 2023, 43(3): 1023-1035. |
[15] | 李落墨, 杨小会. 离子转移反应的研究进展[J]. 有机化学, 2023, 43(3): 1036-1044. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||