有机化学 ›› 2022, Vol. 42 ›› Issue (1): 16-32.DOI: 10.6023/cjoc202108043 上一篇 下一篇
综述与进展
收稿日期:
2021-08-23
修回日期:
2021-09-17
发布日期:
2021-09-26
通讯作者:
柳忠全
基金资助:
Received:
2021-08-23
Revised:
2021-09-17
Published:
2021-09-26
Contact:
Zhongquan Liu
Supported by:
文章分享
高效的碳碳键转化策略可为清洁能源和循环经济带来革新. 在过去的几十年里, 关于化学活性相对较高的碳碳重键的转化研究取得了较大的发展, 然而, 对于化学惰性较高的碳碳单键的转化研究却进展缓慢. 本综述从有机自由基化学角度, 概述了该领域的研究进展, 旨在让感兴趣的学者迅速了解该领域. 重点介绍了醇醚、胺、芳基烷烃以及饱和烷烃四类化合物中饱和C—C键的自由基转化及其机理. 在每一类物质转化中, 分别按照热化学、光化学以及电化学三种引发方式进行阐述.
吴锦涛, 柳忠全. 自由基化学促进的饱和碳碳单键转化研究进展[J]. 有机化学, 2022, 42(1): 16-32.
Jintao Wu, Zhongquan Liu. Advances in Free-Radical Promoted C(sp3)—C(sp3) Bond Conversion[J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 16-32.
[1] |
For Selected reviews on C-C bond cleavage, see: (a) Drahl, M. A.; Manpadi, M.; Williams, L. J. Angew. Chem., Int. Ed. 2013, 52, 11222.
doi: 10.1002/anie.v52.43 pmid: 28075115 |
(b) Allpress, C. J.; Berreau, L. M. Coord. Chem. Rev. 2013, 257, 3005.
doi: 10.1016/j.ccr.2013.06.001 pmid: 28075115 |
|
(c) Dong, G. In C-C Bond Activation, Vol. 346, Springer, Berlin, 2013, pp. 195-232.
pmid: 28075115 |
|
(d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
doi: 10.1021/cr400628s pmid: 28075115 |
|
(e) Marek, I.; Masarwa, A.; Delaye, P.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
doi: 10.1002/anie.201405067 pmid: 28075115 |
|
(f) Chen, P.; Billett, B. A.; Tsukamoto, T.; Dong, G. ACS Catal. 2017, 7, 1340.
doi: 10.1021/acscatal.6b03210 pmid: 28075115 |
|
(g) To, C. T.; Chan, K. S. Acc. Chem. Res. 2017, 50, 1702.
doi: 10.1021/acs.accounts.7b00150 pmid: 28075115 |
|
(h) Kim, D.; Park, W.; Jun, C. Chem. Rev. 2017, 117, 8977.
doi: 10.1021/acs.chemrev.6b00554 pmid: 28075115 |
|
(i) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
doi: 10.1021/acs.chemrev.6b00599 pmid: 28075115 |
|
(j) Song, F.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Chem. Soc. Rev. 2018, 47, 7078.
doi: 10.1039/C8CS00253C pmid: 28075115 |
|
(k) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
doi: 10.1039/C8CS00386F pmid: 28075115 |
|
(l) Wang, B.; Perea, M. A.; Sarpong, R. Angew. Chem., Int. Ed. 2020, 59, 18898.
doi: 10.1002/anie.v59.43 pmid: 28075115 |
|
(m) Dai, P.-F.; Wang, H.; Cui, X.-C.; Qu, J.-P.; Kang, Y.-B. Org. Chem. Front. 2020, 7, 896.
doi: 10.1039/C9QO01438A pmid: 28075115 |
|
(n) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 pmid: 28075115 |
|
(o) Wang, J. H.; Blaszczyk, S. A.; Li, X.; Tang, W. Chem. Rev. 2021, 121, 110.
doi: 10.1021/acs.chemrev.0c00160 pmid: 28075115 |
|
(p) Murakami, M.; Ishida, N. Chem. Rev. 2021, 121, 264.
doi: 10.1021/acs.chemrev.0c00569 pmid: 28075115 |
|
[2] |
For selected recent reports on C(sp2)-C bond cleavage, see: (a) Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546.
doi: 10.1038/nature19849 pmid: 31097667 |
(b) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
pmid: 31097667 |
|
(c) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744.
doi: 10.1002/anie.v57.3 pmid: 31097667 |
|
(d) Liu, J.; Qiu, X.; Huang, X.; Luo, X.; Zhan, C.; Wei, J.; Pan, J.; Liang, Y.; Zhu, Y.; Qin, Q.; Song, S.; Jiao, N. Nat. Chem. 2019, 11, 7.
pmid: 31097667 |
|
(e) Smaligo, A. J.; Swain, M.; Quintana, J. C.; Tan, M. F.; Kim, D. A.; Kwon, O. Science 2019, 364, 681.
doi: 10.1126/science.aaw4212 pmid: 31097667 |
|
(f) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. J. Am. Chem. Soc. 2019, 141, 11000.
doi: 10.1021/jacs.9b05925 pmid: 31097667 |
|
(g) Liu, J.; Zhang, C.; Zhang, Z.; Wen, X.; Dou, X.; Wei, J.; Qiu, X.; Song, S.; Jiao, N. Science. 2020, 367, 281.
doi: 10.1126/science.aay9501 pmid: 31097667 |
|
(h) Swain, M.; Sadykhov, G.; Wang, R.; Kwon, O. Angew. Chem., Int. Ed. 2020, 59, 17565.
doi: 10.1002/anie.v59.40 pmid: 31097667 |
|
(i) Wang, G.; Guo, Y.; Wan, J. Chin. J. Org. Chem. 2020, 40, 645. (in Chinese)
doi: 10.6023/cjoc201912018 pmid: 31097667 |
|
(王国栋, 郭艳辉, 万结平, 有机化学, 2020, 40, 645.)
doi: 10.6023/cjoc201912018 pmid: 31097667 |
|
(j) Wang, M.; Wu, Y.; Yao, J.; Deng, L.; Pan, Y.; Huang, K.; Tang, H. Chin. J. Org. Chem. 2019, 39, 3223. (in Chinese)
doi: 10.6023/cjoc201904051 pmid: 31097667 |
|
(王毛锐, 吴雨峥, 姚健, 邓黎, 潘英明, 黄克斌, 唐海涛, 有机化学, 2019, 39, 3223.)
doi: 10.6023/cjoc201904051 pmid: 31097667 |
|
(k) Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423. (in Chinese)
doi: 10.6023/cjoc202002035 pmid: 31097667 |
|
(代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40, 1423.)
doi: 10.6023/cjoc202002035 pmid: 31097667 |
|
[3] |
For selected reviews on cleavage of C-C bond in alcohols and/or ethers, see: (a) Ishida, N.; Murakami, M. Chem. Lett. 2017, 46, 1692.
doi: 10.1246/cl.170834 pmid: 33085458 |
(b) Jia, K.; Chen, Y. Chem. Commun. 2018, 54, 6105.
doi: 10.1039/C8CC02642D pmid: 33085458 |
|
(c) Wang, M.; Ma, J.; Liu, H.; Luo, N.; Zhao, Z.; Wang, F. ACS Catal. 2018, 8, 2129.
doi: 10.1021/acscatal.7b03790 pmid: 33085458 |
|
(d) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
doi: 10.1021/acs.accounts.0c00306 pmid: 33085458 |
|
(e) McDonald, T. R.; Mills, L. R.; West, M. S.; Rousseaux, S. A. L. Chem. Rev. 2021, 121, 3.
doi: 10.1021/acs.chemrev.0c00346 pmid: 33085458 |
|
(f) Lutz, M. D. R.; Morandi, B. Chem. Rev. 2021, 121, 300.
doi: 10.1021/acs.chemrev.0c00154 pmid: 33085458 |
|
[4] |
Schaafsma, S. E.; Jorritsma, R.; Steinberg, H.; de Boer. T. J. Tetrahedron Lett. 1973, 11, 827.
|
[5] |
Iwasawa, N.; Hayakawa, S.; Isobe, K.; Narasaka, K. Chem. Lett. 1991, 20, 1193.
doi: 10.1246/cl.1991.1193 |
[6] |
Iwasawa, N.; Funahnashi, M.; Hayakawa, S.; Narasaka, K. Chem. Lett. 1993, 22, 545.
doi: 10.1246/cl.1993.545 |
[7] |
Ilangovan, A.; Saravanakumar, S.; Malayappasamy, S. Org. Lett. 2013, 15, 4968.
doi: 10.1021/ol402229m pmid: 24047506 |
[8] |
Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490.
doi: 10.1021/jacs.5b00939 |
[9] |
(a) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
doi: 10.1002/(ISSN)1521-3773 pmid: 25379166 |
(b) Rozen, S. Eur. J. Org. Chem. 2005, 2433.
pmid: 25379166 |
|
(b) Sanford, G. J. Fluorine Chem. 2007, 128, 90.
doi: 10.1016/j.jfluchem.2006.10.019 pmid: 25379166 |
|
(d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
doi: 10.1021/op700134j pmid: 25379166 |
|
(e) Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug Discovery Dev. 2008, 11, 803.
pmid: 25379166 |
|
(f) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
pmid: 25379166 |
|
(g) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804.
pmid: 25379166 |
|
(h) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
doi: 10.1038/nature10108 pmid: 25379166 |
|
(i) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929.
doi: 10.1039/c2cc16158c pmid: 25379166 |
|
(j) Tredwell, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2012, 51, 11426.
doi: 10.1002/anie.201204687 pmid: 25379166 |
|
(k) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
doi: 10.1002/anie.v52.32 pmid: 25379166 |
|
(l) Li, Y.; Wu, Y.; Li, G.-S.; Wang, X. S. Adv. Synth. Catal. 2014, 356, 1412.
doi: 10.1002/adsc.v356.7 pmid: 25379166 |
|
(m) Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Chem. Sci. 2014, 5, 4545.
pmid: 25379166 |
|
[10] |
Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692.
doi: 10.1002/anie.201506578 |
[11] |
(a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
doi: 10.1002/(ISSN)1521-3773 |
(b) Lapointe, G.; Kapat, A.; Weidner, K.; Renaud, P. Pure Appl. Chem. 2012, 84, 1633.
doi: 10.1351/PAC-CON-11-11-21 |
|
[12] |
Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
doi: 10.1002/anie.201510973 |
[13] |
(a) Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.
doi: 10.1016/0010-8545(94)01128-1 pmid: 11996549 |
(b) Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev. 2002, 102, 1771.
pmid: 11996549 |
|
(c) Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta 2005, 358, 1.
doi: 10.1016/j.ica.2004.04.029 pmid: 11996549 |
|
[14] |
Wang, M.; Lu, J.; Li, L.; Li, H.; Liu, H.; Wang, F. J. Catal. 2017, 348, 160.
doi: 10.1016/j.jcat.2017.02.017 |
[15] |
(a) Wertz, S.; Studer, A. Green Chem. 2013, 15, 3116.
doi: 10.1039/c3gc41459k pmid: 29707945 |
(b) Cao, Q.; Dornan, L. M.; Rogan, L.; Hughes, N. L.; Muldoon, M. J. Chem. Commun. 2014, 50, 4524.
doi: 10.1039/C3CC47081D pmid: 29707945 |
|
(c) Nutting, M. J.; Rafiee, E.; Stahl, S. S. Chem. Rev. 2018, 118, 4834.
doi: 10.1021/acs.chemrev.7b00763 pmid: 29707945 |
|
(d) Shibuya, M.; Shibuta, T.; Fukuda, H.; Iwabuchi, Y. Org. Lett. 2012, 14, 5010.
doi: 10.1021/ol3021435 pmid: 29707945 |
|
[16] |
Liu, M.; Zhang, Z.; Song, J.; Liu, S.; Liu, H.; Han, B. Angew. Chem., Int. Ed. 2019, 58, 17393.
doi: 10.1002/anie.v58.48 |
[17] |
Liu, M.; Zhang, R.; Yan, J.; Liu, S.; Liu, H.; Liu, Z.; Wang, W.; He, Z.; Han, B. Chem 2020, 6, 3288.
doi: 10.1016/j.chempr.2020.09.006 |
[18] |
Kim, S. M.; Shin, H. Y.; Kim, D. W.; Yang, J. W. ChemSusChem 2016, 9, 241.
doi: 10.1002/cssc.201501359 |
[19] |
Luo, H.; Wang, L.; Shang, S.; Li, G.; Lv, Y.; Gao, S.; Dai, W. Angew. Chem., Int. Ed. 2020, 59, 19268.
doi: 10.1002/anie.v59.43 |
[20] |
Bloom, S.; Bume, D. D.; Pitts, C. R.; Lectka, T. Chem. Eur. J. 2015, 21, 8060.
doi: 10.1002/chem.201501081 |
[21] |
Ji, M.; Wu, Z.; Zhu, C. Chem. Commun. 2019, 55, 2368.
doi: 10.1039/C9CC00378A |
[22] |
(a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076.
doi: 10.1039/b602596j |
(b) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213.
doi: 10.1016/j.tet.2006.05.024 |
|
[23] |
Yayla, G. H.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2016, 138, 10794.
doi: 10.1021/jacs.6b06517 |
[24] |
Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514.
doi: 10.1021/jacs.5b13066 |
[25] |
Guo, J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. W. Angew. Chem., Int. Ed. 2016, 128, 15319.
|
[26] |
Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 1457.
doi: 10.1021/jacs.8b12552 |
[27] |
Gazi, S.; Ng, W. K. H.; Ganguly, R.; Moeljadi, A. M. P.; Hirao, H.; Soo, H. S. Chem. Sci. 2015, 6, 7130.
doi: 10.1039/C5SC02923F |
[28] |
Wang, Y.; Yang, L.; Liu, S.; Huang, L.; Liu, Z. Q. Adv. Synth. Catal. 2019, 361, 4568.
doi: 10.1002/adsc.v361.19 |
[29] |
Shi, S.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485.
doi: 10.1021/acs.chemrev.0c00335 pmid: 33017147 |
[30] |
Khan, F. N.; Jayakumar, R.; Pillai, C. N. J. Mol. Catal. A: Chem. 2003, 195, 139.
doi: 10.1016/S1381-1169(02)00551-4 |
[31] |
Liu, Z.; Zhao, L.; Shang, X.; Cui, Z. Org. Lett. 2012, 14, 3218.
doi: 10.1021/ol301220s |
[32] |
For selected reviews on cleavage of C-C bond in amines, see: (a) Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044.
doi: 10.1002/anie.v58.40 |
(b) Sokolova, O. O.; Bower, J. F. Chem. Rev. 2021, 121, 80.
doi: 10.1021/acs.chemrev.0c00166 |
|
[33] |
Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Science 2018, 361, 171.
doi: 10.1126/science.aat6365 pmid: 30002251 |
[34] |
Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Nature 2018, 564, 244.
doi: 10.1038/s41586-018-0700-3 |
[35] |
Li, W.; Liu, W.; Leonard, D. K.; Rabeah, J.; Junge, K.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2019, 58, 10693.
doi: 10.1002/anie.v58.31 |
[36] |
He, Y.; Zheng, Z.; Liu, Y.; Qiao, J.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 1676.
doi: 10.1021/acs.orglett.9b00226 |
[37] |
He, K.; Zhang, T.; Zhang, S.; Sun, Z.; Zhang, Y.; Jia, X. Org. Lett. 2019, 21, 5030.
doi: 10.1021/acs.orglett.9b01574 |
[38] |
Yu, Y.; Zhang, Y.; Sun, C.; Shi, L.; Wang, W.; Li, H. J. Org. Chem. 2020, 85, 2725.
doi: 10.1021/acs.joc.9b02919 |
[39] |
Cai, S.; Zhao, X.; Wang, X.; Liu, Q.; Li, Z.; Wang, D. Z. Angew. Chem., Int. Ed. 2012, 51, 8050.
doi: 10.1002/anie.v51.32 |
[40] |
(a) Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. Synth. Catal. 2014, 356, 2831.
doi: 10.1002/adsc.201400742 pmid: 28786686 |
(b) Morris, S. A.; Wang, J.; Zheng, N. Acc. Chem. Res. 2016, 49, 1957.
doi: 10.1021/acs.accounts.6b00263 pmid: 28786686 |
|
(c) Cai, Y.; Wang, J.; Zhang, Y.; Li, Z.; Hu, D.; Zheng, N.; Chen, H. J. Am. Chem. Soc. 2017, 139, 12259.
doi: 10.1021/jacs.7b06319 pmid: 28786686 |
|
[41] |
Liu, Z.; Wu, S.; Chen, Y. ACS Catal. 2021, 11, 10565.
doi: 10.1021/acscatal.1c02981 |
[42] |
Shono, T.; Matsumura, Y.; Inoue, K. J. Am. Chem. Soc. 1984, 106, 6075.
doi: 10.1021/ja00332a052 |
[43] |
Yang, S.; Wang, L.; Zhang, H.; Liu, C.; Zhang, L.; Wang, X.; Zhang, G.; Li, Y.; Zhang, Q. ACS Catal. 2019, 9, 716.
doi: 10.1021/acscatal.8b03768 |
[44] |
Wang, L.; Wang, X.; Zhang, G.; Yang, S.; Li, Y.; Zhang, Q. Org. Chem. Front. 2019, 6, 2934.
doi: 10.1039/C9QO00638A |
[45] |
Zhao, J.; Shen, T.; Sun, Z.; Wang, N.; Yang, L.; Wu, J.; You, H.; Liu, Z. Q. Org. Lett. 2021, 23, 4057.
doi: 10.1021/acs.orglett.1c01303 |
[46] |
(a) Rao, V. R.; Hixson, S. S. J. Am. Chem. Soc. 1979, 101, 6458.
doi: 10.1021/ja00515a064 |
(b) Hixson, S. S.; Garrett, D. W. J. Am. Chem. Soc. 1974, 96, 4872.
doi: 10.1021/ja00822a026 |
|
[47] |
Pitts, C. R.; Ling, B.; Snyder, J. A.; Bragg, A. E.; Lectka, T. J. Am. Chem. Soc. 2016, 138, 6598.
doi: 10.1021/jacs.6b02838 pmid: 27136383 |
[48] |
Petzold, D.; Singh, P.; Almqvist, F.; König, B. Angew. Chem., Int. Ed. 2019, 58, 8577.
doi: 10.1002/anie.v58.25 |
[49] |
Wang, Y.; Wang, N.; Zhao, J.; Sun, M.; You, H.; Fang, F.; Liu, Z. Q. ACS Catal. 2020, 10, 6603.
doi: 10.1021/acscatal.0c01495 |
[50] |
Shono, T.; Matsumura, Y. J. Org. Chem. 1970, 35, 4157.
doi: 10.1021/jo00837a604 |
[51] |
Zollinger, D.; Griesbach, U.; Putter, H.; Comninellis, C. Electrochem. Commun. 2004, 6, 605.
doi: 10.1016/j.elecom.2004.04.014 |
[52] |
Peng, P.; Yan, X.; Zhang, K.; Liu, Z.; Zeng, L.; Chen, Y.; Zhang, H.; Lei, A. Nat. Commun. 2021, 12, 3075.
doi: 10.1038/s41467-021-23401-8 pmid: 34031421 |
[53] |
Ishii, Y.; Iwahama, T; Sakaguchi, S.; Nakayama, K.; Nishiyama, Y. J. Org. Chem. 1996, 61, 4520.
doi: 10.1021/jo951970l |
[54] |
Hwang, K. C.; Sagadevan, A. Science 2014, 346, 1495.
doi: 10.1126/science.1259684 pmid: 25525242 |
[55] |
Matsumoto, Y.; Kuriyama, M.; Yamamoto, K.; Nishida, K.; Onomura, O. Org. Process Res. Dev. 2018, 22, 1312.
doi: 10.1021/acs.oprd.8b00196 |
[1] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[2] | 张勇, 田志高, 黄琳, 侯秋飞, 范红红, 汪万强. α-氰醇甲磺酸酯在合成α-氨基腈类化合物中的应用[J]. 有机化学, 2024, 44(2): 561-572. |
[3] | 陶苏艳, 项紫欣, 白俊杰, 万潇, 万小兵. 亚硝酸叔丁酯参与的酰胺水解反应[J]. 有机化学, 2024, 44(2): 550-560. |
[4] | 江港钟, 林嘉欣, 鲍晓光, 万小兵. 亚硝酸异戊酯活化伯磺酰胺制备磺酰溴与磺酰氯[J]. 有机化学, 2024, 44(2): 533-549. |
[5] | 曹同阳, 李玮, 王力竞. N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展[J]. 有机化学, 2024, 44(2): 508-524. |
[6] | 李洋, 董亚楠, 李跃辉. 经由N-硼基酰胺中间体的酰胺高效转化合成腈类化合物[J]. 有机化学, 2024, 44(2): 638-643. |
[7] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[8] | 张剑, 梁万洁, 杨艺, 闫法超, 刘会. 联烯胺化合物的区域选择性双官能团化[J]. 有机化学, 2024, 44(2): 335-348. |
[9] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[10] | 徐利军, 李宗军, 韩福社, 高翔. N,N-二甲基甲酰胺促进的富勒烯稠合噁唑啉衍生物的合成[J]. 有机化学, 2024, 44(1): 242-250. |
[11] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[12] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[13] | 黄志友, 杨平, 何波, 欧文霞, 袁思雨. 吗啉磺酰胺化合物的设计、合成及其抑制大豆萌芽活性的研究[J]. 有机化学, 2024, 44(1): 309-315. |
[14] | 文思, 丁宇浩, 田青于, 葛进, 程国林. 铑(III)催化苯甲亚胺酸乙酯和CF3-亚胺氧锍叶立德C—H 活化/环化反应合成CF3-1H-苯并[de][1,8]萘吡啶[J]. 有机化学, 2024, 44(1): 291-300. |
[15] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||