有机化学 ›› 2022, Vol. 42 ›› Issue (4): 1235-1240.DOI: 10.6023/cjoc202109036 上一篇 下一篇
研究简报
收稿日期:
2021-09-22
修回日期:
2021-12-06
发布日期:
2021-12-30
通讯作者:
张万轩
基金资助:
Liming Wang, Ke Li, Wanxuan Zhang()
Received:
2021-09-22
Revised:
2021-12-06
Published:
2021-12-30
Contact:
Wanxuan Zhang
Supported by:
文章分享
1-氟吡啶三氟甲烷磺酸盐(FP-OTf)和二苯基二硒醚在空气中反应生成苯次硒酸和苯亚硒酸, 这种混合物可以催化醛肟和酮肟分别转化腈或酮. 通过改变二苯基二硒醚的用量及其与FP-OTf的物质的量之比, 能够提高以上两类反应的催化效果. 当二苯基二硒醚用量为5 mol%, FP-OTf的用量为4 mol%时, 可以催化醛肟以较高的产率转化为腈(57%~94%), 而在酮肟转化为酮的反应中, 二苯基二硒醚的用量为2.5 mol%, 且与FP-OTf的物质的量之比为1∶1.2时, 产率较高(74%~91%).
王利敏, 李柯, 张万轩. 有机硒催化肟转化为腈或酮[J]. 有机化学, 2022, 42(4): 1235-1240.
Liming Wang, Ke Li, Wanxuan Zhang. Organoselenium-Catalyzed Conversion of Oximes to Nitriles or Ketones[J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1235-1240.
Entry | Oxidant | PhSeSePh/mol% | Molar ratiob | Temp./℃ | Solvent | Yield/% |
---|---|---|---|---|---|---|
1 | FP-OTf | 10 | 1∶1 | 40 | CH3CN | 60 |
2 | FP-OTf | 10 | 1∶1 | 65 | CH3CN | 87 |
3 | FP-OTf | 10 | 1∶1 | 80 | CH3CN | 71 |
4 | NFSI | 10 | 1∶1 | 65 | CH3CN | 76 |
5 | Selectfluor | 10 | 1∶1 | 65 | CH3CN | Trace |
6 | FP-OTf | 10 | 1∶0.8 | 65 | CH3CN | 88 |
7 | FP-OTf | 10 | 1∶0.6 | 65 | CH3CN | 86 |
8 | FP-OTf | 5 | 1∶0.8 | 65 | CH3CN | 94 |
9 | FP-OTf | 2.5 | 1∶0.8 | 65 | CH3CN | 91 |
10 | FP-OTf | 5 | 1∶0.8 | 65 | PE | 10 |
11 | FP-OTf | 5 | 1∶0.8 | 65 | CHCl3 | 62 |
12 | FP-OTf | 5 | 1∶0.8 | 65 | PhCH3 | 55 |
Entry | Oxidant | PhSeSePh/mol% | Molar ratiob | Temp./℃ | Solvent | Yield/% |
---|---|---|---|---|---|---|
1 | FP-OTf | 10 | 1∶1 | 40 | CH3CN | 60 |
2 | FP-OTf | 10 | 1∶1 | 65 | CH3CN | 87 |
3 | FP-OTf | 10 | 1∶1 | 80 | CH3CN | 71 |
4 | NFSI | 10 | 1∶1 | 65 | CH3CN | 76 |
5 | Selectfluor | 10 | 1∶1 | 65 | CH3CN | Trace |
6 | FP-OTf | 10 | 1∶0.8 | 65 | CH3CN | 88 |
7 | FP-OTf | 10 | 1∶0.6 | 65 | CH3CN | 86 |
8 | FP-OTf | 5 | 1∶0.8 | 65 | CH3CN | 94 |
9 | FP-OTf | 2.5 | 1∶0.8 | 65 | CH3CN | 91 |
10 | FP-OTf | 5 | 1∶0.8 | 65 | PE | 10 |
11 | FP-OTf | 5 | 1∶0.8 | 65 | CHCl3 | 62 |
12 | FP-OTf | 5 | 1∶0.8 | 65 | PhCH3 | 55 |
Entry | Oxime 1/2 | Product 3/4 | Yield/% |
---|---|---|---|
1a | 1a R1=Ph, R2=H | 3a R1=Ph | 94 |
2a | 1b R1=4-Et-C6H4, R2=H | 3b R1=4-Et-C6H4 | 76 |
3a | 1c R1=4-HOC6H4, R2=H | 3c R1=4-HOC6H4 | 88 |
4a | 1d R1=4-NCC6H4, R2=H | 3d R1=4-NCC6H4 | 57 |
5a | 1e R1=4-ClC6H4, R2=H | 3e R1=4-ClC6H4 | 67 |
6a | 1f R1=3-MeC6H4, R2=H | 3f R1=3-Me-C6H4 | 75 |
7a | 1g R1=PhCH2CH2, R2=H | 3g R1=PhCH2CH2 | 84 |
8a | 1h R1=4-i-PrC6H4CH2CHCH3, R2=H | 3h R1=4-i-PrC6H4CH2CHCH3 | 80 |
9b,c | 2a R1=Ph, R2=CH3 | 4a R1=Ph, R2=CH3 | 88 |
10b,c | 2bR1=4-NO2C6H4, R2=CH3 | 4b R1=4-NO2C6H4, R2=CH3 | 74 |
11b,c | 2c R1=4-MeC6H4, R2=CH3 | 4c R1=4-MeC6H4, R2=CH3 | 85 |
12b,d | 2d R1=4-ClC6H4, R2=CH3 | 4d R1=4-ClC6H4, R2=CH3 | 90 |
13b,d | 2e R1=4-CH3OC6H4, R2=CH3 | 4e R1=4-CH3OC6H4, R2=CH3 | 75 |
14b,e | 2f R1=Ph, R2=Ph | 4f R1=Ph, R2=Ph | 91 |
15b,d | 2g | 4g | 78 |
Entry | Oxime 1/2 | Product 3/4 | Yield/% |
---|---|---|---|
1a | 1a R1=Ph, R2=H | 3a R1=Ph | 94 |
2a | 1b R1=4-Et-C6H4, R2=H | 3b R1=4-Et-C6H4 | 76 |
3a | 1c R1=4-HOC6H4, R2=H | 3c R1=4-HOC6H4 | 88 |
4a | 1d R1=4-NCC6H4, R2=H | 3d R1=4-NCC6H4 | 57 |
5a | 1e R1=4-ClC6H4, R2=H | 3e R1=4-ClC6H4 | 67 |
6a | 1f R1=3-MeC6H4, R2=H | 3f R1=3-Me-C6H4 | 75 |
7a | 1g R1=PhCH2CH2, R2=H | 3g R1=PhCH2CH2 | 84 |
8a | 1h R1=4-i-PrC6H4CH2CHCH3, R2=H | 3h R1=4-i-PrC6H4CH2CHCH3 | 80 |
9b,c | 2a R1=Ph, R2=CH3 | 4a R1=Ph, R2=CH3 | 88 |
10b,c | 2bR1=4-NO2C6H4, R2=CH3 | 4b R1=4-NO2C6H4, R2=CH3 | 74 |
11b,c | 2c R1=4-MeC6H4, R2=CH3 | 4c R1=4-MeC6H4, R2=CH3 | 85 |
12b,d | 2d R1=4-ClC6H4, R2=CH3 | 4d R1=4-ClC6H4, R2=CH3 | 90 |
13b,d | 2e R1=4-CH3OC6H4, R2=CH3 | 4e R1=4-CH3OC6H4, R2=CH3 | 75 |
14b,e | 2f R1=Ph, R2=Ph | 4f R1=Ph, R2=Ph | 91 |
15b,d | 2g | 4g | 78 |
[1] |
(a) Guo, R.; Liao, L.; Zhao, X. Molecules 2017, 22, 835.
doi: 10.3390/molecules22050835 |
(b) Ortgies, S.; Breder, A. ACS Catal. 2017, 7, 5828.
doi: 10.1021/acscatal.7b01216 |
|
(c) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409.
doi: 10.1002/anie.200903893 |
|
(d) Santi, C.; Santoro, S.; Battistelli, B. Curr. Org. Chem. 2010, 14, 2442.
doi: 10.2174/138527210793358231 |
|
(e) Santoro, S.; Azeredo, J. B.; Nascimento, V.; Sancineto, L.; Braga, A. L.; Santi, C. RSC Adv. 2014, 4, 31521.
doi: 10.1039/C4RA04493B |
|
(f) Xiao, X.; Guan, C.; Xu, J.; Fu, W.; Yu, L. Green Chem. 2021, 23, 4647.
doi: 10.1039/D1GC00961C |
|
[2] |
(a) Brink, G.-J.; Fernandes, B. C. M.; van Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon, R. A. J. Chem. Soc., Perkin Trans. 1 2001, 224.
pmid: 26574922 |
(b) Choi, J. K.; Chang, Y. K.; Hong, S. Y. Tetrahedron Lett. 1988, 29, 1967.
doi: 10.1016/S0040-4039(00)82091-2 pmid: 26574922 |
|
(c) Roh, K. R.; Kim, K. S.; Kim, Y. H. Tetrahedron Lett. 1991, 32, 793.
doi: 10.1016/S0040-4039(00)74888-X pmid: 26574922 |
|
(d) Ichikawa, H.; Usami, Y.; Arimoto, M. Tetrahedron Lett. 2005, 46, 8665.
doi: 10.1016/j.tetlet.2005.10.055 pmid: 26574922 |
|
(e) Zhang, X.; Sun, J.; Ding, Y.; Yu, L. Org. Lett. 2015, 17, 5840.
doi: 10.1021/acs.orglett.5b03011 pmid: 26574922 |
|
(f) Wang, F.; Yang, C.; Shi, Y.; Lei, Y. Mol. Catal. 2021, 514, 111849.
pmid: 26574922 |
|
[3] |
(a) Jin, W.; Zheng, P.; Wong, W.-T.; Law, G.-L. Adv. Synth. Catal. 2017, 359, 1588.
doi: 10.1002/adsc.201601065 |
(b) Chuang, H.-Y.; Schupp, M.; Meyrelles, R.; Maryasin, B.; Maulide, N. Angew. Chem., Int. Ed. 2021, 60, 13778.
doi: 10.1002/anie.202100801 |
|
[4] |
Wu, J.-J.; Xu, J.; Zhao, X. Chem.-Eur. J. 2016, 22, 15265.
doi: 10.1002/chem.201603975 |
[5] |
(a) Kawamata, Y.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2016, 138, 5206.
doi: 10.1021/jacs.6b01462 pmid: 27064419 |
(b) Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Nat. Commun. 2018, 9, 527.
doi: 10.1038/s41467-018-02955-0 pmid: 27064419 |
|
[6] |
(a) Tiecco, M.; Testaferr, L.; Santi, C. Eur. J. Org. Chem. 1999, 797.
|
(b) Guo, R.; Huang, J.; Huang, H.; Zhao, X. Org. Lett. 2016, 18, 504.
doi: 10.1021/acs.orglett.5b03543 |
|
[7] |
(a) Fragale, G.; Neuburger, M.; Wirth, T. Chem. Commun. 1998, 1867.
|
(b) Fujita, K.; Iwaoka, M.; Tomoda, S. Chem. Lett. 1994, 23, 923.
doi: 10.1246/cl.1994.923 |
|
(c) Wirth, T.; Häuptli, S.; Leuenberger, M. Tetrahedron: Asymmetry 1998, 9, 547.
|
|
(d) Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. Chem.-Eur. J. 2002, 8, 1118.
doi: 10.1002/1521-3765(20020301)8:5【-逻*辑*与-】#x00026;lt;1118::AID-CHEM1118【-逻*辑*与-】#x00026;gt;3.0.CO;2-2 |
|
(e) Browne, D. M.; Niyomura, O.; Wirth, T. Org. Lett. 2007, 9, 3169.
doi: 10.1021/ol071223y |
|
(f) Alberto, E. E.; Braga, A. L.; Detty, M. R. Tetrahedron 2012, 68, 10476.
doi: 10.1016/j.tet.2012.08.004 |
|
(g) Ortgies, S.; Rode, K.; Koszinowski, K.; Kind, J.; Thiele, C. M.; Rehbein, J.; Breder, A. ACS Catal. 2017, 7, 7578.
doi: 10.1021/acscatal.7b02729 |
|
[8] |
(a) Ortgies, S.; Breder, A. Org. Lett. 2015, 17, 2748.
doi: 10.1021/acs.orglett.5b01156 pmid: 25997578 |
(b) Zhang, X.; Guo, R.; Zhao, X. Org. Chem. Front. 2015, 2, 1334.
doi: 10.1039/C5QO00179J pmid: 25997578 |
|
[9] |
(a) Hori, T.; Sharpless, K. B. J. Org. Chem. 1979, 44, 4204.
doi: 10.1021/jo01337a046 pmid: 15575789 |
(b) Hori, T.; Sharpless, K. B. J. Org. Chem. 1979, 44, 4208.
doi: 10.1021/jo01337a047 pmid: 15575789 |
|
(c) Mellegaard, S. R.; Tunge, J. A. J. Org. Chem. 2004, 69, 8979.
pmid: 15575789 |
|
(d) Carrera, I.; Brovetto, M. C.; Seoane, G. A. Tetrahedron Lett. 2006, 47, 7849.
doi: 10.1016/j.tetlet.2006.09.024 pmid: 15575789 |
|
(e) Guo, R.; Huang, J.; Zhao, X. ACS Catal. 2018, 8, 926.
doi: 10.1021/acscatal.7b03829 pmid: 15575789 |
|
(f) Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E. Nat. Chem. 2015, 7, 146.
doi: 10.1038/nchem.2141 pmid: 15575789 |
|
[10] |
Yu, L.; Wang, J.; Chen, T.; Ding, K.; Pan, Y. Chin. J. Org. Chem. 2013, 33, 1096. (in Chinese)
doi: 10.6023/cjoc2012012049 |
( 俞磊, 王俊, 陈天, 丁克鸿, 潘毅, 有机化学, 2013, 33, 1096.)
doi: 10.6023/cjoc2012012049 |
|
[11] |
(a) Liao, L.; Zhang, H.; Zhao, X. ACS Catal. 2018, 8, 6745.
doi: 10.1021/acscatal.8b01595 |
(b) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
doi: 10.1039/C8GC01245H |
|
(c) Wang, T.; Jing, X.; Chen, C.; Yu, L. J. Org. Chem. 2017, 82, 9342.
doi: 10.1021/acs.joc.7b01245 |
|
(d) Deng, Z.; Wei, J.; Liao, L.; Huang, H.; Zhao, X. Org. Lett. 2015, 17, 1834.
doi: 10.1021/acs.orglett.5b00213 |
|
[12] |
Trenner, J.; Depken, C.; Weber, T.; Breder, A. Angew. Chem., Int. Ed. 2013, 52, 8952.
doi: 10.1002/anie.201303662 |
[13] |
Jing, X.; Yuan, D.; Yu, L. Adv. Synth. Catal. 2017, 359, 1194.
doi: 10.1002/adsc.201601353 |
[14] |
Selected examples: (a) Zhang, G. F.; Wen, X.; Wang, Y.; Mo, W. M.; Ding, C. R. Prog. Chem. 2012, 24, 361.
|
(b) Zheng, Y.; Wu, A.; Ke, Y.; Cao, H.; Yu, L. Chin. Chem. Lett. 2019, 30, 937.
doi: 10.1016/j.cclet.2019.01.012 |
|
(c) Wang, F.; Chen, T.; Shi, Y.; Yu, L. Asian J. Org. Chem. 2021, 10, 614.
doi: 10.1002/ajoc.202000675 |
|
(d) Deng, X.; Qian, R.; Zhou, H.; Yu, L. Chin. Chem. Lett. 2021, 32, 1029.
doi: 10.1016/j.cclet.2020.09.012 |
|
(e) Song, J. H.; Bae, S. M.; Lee, E. J.; Cho, J. H.; Jung, D. I. Asian J. Chem. 2020, 32, 1676.
doi: 10.14233/ajchem.2020.22639 |
|
[15] |
(a) Grirrane, A.; Corma, A.; Garcia, H. J. Catal. 2009, 268, 350.
doi: 10.1016/j.jcat.2009.10.005 |
(b) Reitsema, R. J. Org. Chem. 1958, 23, 2038.
doi: 10.1021/jo01106a636 |
|
(c) Royals, E. E.; Horne, S. E. J. J. Am. Chem. Soc. 1951, 73, 5856.
doi: 10.1021/ja01156a119 |
|
[16] |
Selected examples: (a) Choudhare, T. S.; Wagare, D. S.; Shirsath, S. E.; Netankar, P. D. J. Chem. Sci. 2021, 133, 69.
doi: 10.1007/s12039-021-01939-w |
(b) Hart-Davis, J.; Battioni, P.; Boucher, J.-L.; Mansuy, D. J. Am. Chem. Soc. 1998, 120, 12524.
doi: 10.1021/ja981805y |
|
(c) Yang, S. H.; Chang, S. Org. Lett. 2001, 4209.
|
|
(d) Ishihara, K.; Furuya, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2002, 41, 2983.
doi: 10.1002/1521-3773(20020816)41:16【-逻*辑*与-】#x00026;lt;2983::AID-ANIE2983【-逻*辑*与-】#x00026;gt;3.0.CO;2-X |
|
(e) Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew. Chem., Int. Ed. 2007, 46, 3922.
doi: 10.1002/anie.200605004 |
|
(f) Rai, A.; Yadav, L. D. S. Eur. J. Org. Chem. 2013, 2013, 1889.
doi: 10.1002/ejoc.201300059 |
|
(g) Tambara, K.; Pantos, G. D. Org. Biomol. Chem. 2013, 11, 2466.
doi: 10.1039/c3ob27362h |
|
[17] |
(a) Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Org. Lett. 2014, 16, 1346.
doi: 10.1021/ol500075h |
(b) Chen, C.; Zhang, X.; Cao, H. Wang, F.; Yu, L.; Xu, Q. Adv. Synth. Catal. 2019, 361, 603.
doi: 10.1002/adsc.201801163 |
|
[18] |
(a) Kakroudi, M. A.; Kazemi, F.; Kaboudin, B. J. Mol. Catal. A: Chem. 2014, 392, 112.
doi: 10.1016/j.molcata.2014.04.036 |
(b) Abedi, S.; Karimi, B.; Kazemi, F.; Bostina, M.; Vali, H. Org. Biomol. Chem. 2013, 11, 416.
doi: 10.1039/C2OB26907D |
|
[19] |
Belladona, A. L.; Cervo, R.; Alves, D.; Barcellos, T.; Cargnelutti, R.; Schumacher, R. F. Tetrahedron Lett. 2020, 61, 152035.
doi: 10.1016/j.tetlet.2020.152035 |
[20] |
Reich, H. J.; Wollowitz, S.; Trend, J. E.; Chow, F.; Wendelborn, D. F. J. Org. Chem. 1978, 43, 1697.
doi: 10.1021/jo00403a016 |
[21] |
Golebiewski, W. M.; Gucma, M. J. Heterocycl. Chem. 2006, 43, 509.
doi: 10.1002/jhet.5570430240 |
[22] |
(a) Lamani, M.; Prabhu, K. R. Angew. Chem., Int. Ed. 2010, 49, 6622.
doi: 10.1002/anie.201002635 |
(b) Mori, N.; Togo, H. Synlett 2005, 1456.
|
|
[23] |
Leggio, A.; Gallo, S.; Liguori, A. Tetrahedron Lett. 2017, 58, 1512.
doi: 10.1016/j.tetlet.2017.03.007 |
[24] |
Liu, J.; Li, H. Chen, K.-X.; Zuo, J.-P.; Guo, Y.-W.; Tang, W.; Li, X.-W. J. Med. Chem. 2018, 61, 11298.
doi: 10.1021/acs.jmedchem.8b01430 |
[1] | 邹发凯, 王能中, 姚辉, 王慧, 刘明国, 黄年玉. 1β-/3R-芳基硫代糖的区域与立体选择性合成[J]. 有机化学, 2024, 44(2): 593-604. |
[2] | 刘继宇, 李圣玉, 陈款, 朱茵, 张元. 三苯胺功能化有序介孔聚合物作为无金属光催化剂用于二硫化物合成[J]. 有机化学, 2024, 44(2): 605-612. |
[3] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[4] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[5] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[6] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[7] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[8] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[9] | 张勇, 田志高, 黄琳, 侯秋飞, 范红红, 汪万强. α-氰醇甲磺酸酯在合成α-氨基腈类化合物中的应用[J]. 有机化学, 2024, 44(2): 561-572. |
[10] | 李洋, 董亚楠, 李跃辉. 经由N-硼基酰胺中间体的酰胺高效转化合成腈类化合物[J]. 有机化学, 2024, 44(2): 638-643. |
[11] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[12] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[13] | 李梦竹, 孟博莹, 兰文捷, 傅滨. 邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物[J]. 有机化学, 2024, 44(1): 195-203. |
[14] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[15] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||