有机化学 ›› 2022, Vol. 42 ›› Issue (9): 2914-2924.DOI: 10.6023/cjoc202204043 上一篇 下一篇
研究论文
陈天煜, 韩峰, 李双艳, 刘建平, 陈建辉*(), 徐清*()
收稿日期:
2022-04-16
修回日期:
2022-05-19
发布日期:
2022-06-08
通讯作者:
陈建辉, 徐清
基金资助:
Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen(), Qing Xu()
Received:
2022-04-16
Revised:
2022-05-19
Published:
2022-06-08
Contact:
Jianhui Chen, Qing Xu
Supported by:
文章分享
研究发现, 使用适当的碱并将反应在空气下进行, 不使用任何外加催化剂即可高效实现杂环甲基化合物与各种醇的选择性脱水碳-烷基化反应. 控制实验说明该反应的确不需要过渡金属催化剂, 机理研究也显示了碱和空气在反应中的关键作用: 该反应实际上通过碱促进下空气将醇氧化为羰基化合物的方式启动, 生成的羰基化合物中间体进而催化烷基化反应的顺利进行、从而选择性地得到烷基化产物, 羰基化合物可在反应中再生、回收、完成催化循环. 该方法具有底物适用范围广、无需过渡金属催化剂及配体、无需惰性气体保护、操作简单、成本较低、产物无过渡金属残留等优点, 因此是一种较为实用的杂环化合物的官能团化方法.
陈天煜, 韩峰, 李双艳, 刘建平, 陈建辉, 徐清. 无过渡金属参与杂环甲基化合物与醇的选择性有氧碳-烷基化反应[J]. 有机化学, 2022, 42(9): 2914-2924.
Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic C-Alkylation of Methyl N-Heteroarenes with Alcohols[J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2914-2924.
Entry | Base (equiv.) | T, t | Conv.b/% of 1a | 3aa/4a ratiob | Yieldc/% of 3a |
---|---|---|---|---|---|
1 | KOH (0.5) | 120 oC, 15 h | 51 | 64/36 | 33 |
2d | KOH (0.5) | 120 oC, 24 h | 59 | 8/92 | 5 |
3e | KOH (0.5) | 120 oC, 24 h | 59 | <1/99 | Trace |
4 | KOH (1.0) | 120 oC, 24 h | 66 | 68/32 | 45 |
5 | KOH (0.5) | 140 oC, 12 h | 62 | 65/35 | 40 |
6 | KOH (1.0) | 140 oC, 12 h | 93 | 98/2 | 91 (83) |
7 | CsOH (1.0) | 140 oC, 12 h | 89 | 98/2 | 87 (80) |
8 | NaOH (1.0) | 140 oC, 12 h | 50 | 18/82 | 9 |
9 | t-BuONa (1.0) | 140 oC, 12 h | 15 | <1/99 | Trace |
10 | t-BuOK (1.0) | 140 oC, 12 h | 84 | 92/8 | 77 |
11f | KOH (1.0) | 140 oC, 12 h | — | — | 0~Trace |
12g | KOH (1.0) | 140 oC, 12 h | — | — | Trace |
13h | KOH (1.0) | 140 oC, 24 h | 90 | 90/10 | 81 (71) |
14i | KOH (1.0) | 140 oC, 12 h | 86~98 | 67/33~87/13 | 57~85 |
15j | KOH (1.0) | 140 oC, 12 h | 16~28 | >99/1 | 16~28 |
16k | KOH (1.0) | 140 oC, 12 h | 13 | >99/1 | 13[ |
17l | KOH (1.0) | 140 oC, 12 h | 64 | 98/2 | 63 (55) |
18m | KOH (1.0) | 140 oC, 12 h | 98 | 94/6 | 92 (92) |
Entry | Base (equiv.) | T, t | Conv.b/% of 1a | 3aa/4a ratiob | Yieldc/% of 3a |
---|---|---|---|---|---|
1 | KOH (0.5) | 120 oC, 15 h | 51 | 64/36 | 33 |
2d | KOH (0.5) | 120 oC, 24 h | 59 | 8/92 | 5 |
3e | KOH (0.5) | 120 oC, 24 h | 59 | <1/99 | Trace |
4 | KOH (1.0) | 120 oC, 24 h | 66 | 68/32 | 45 |
5 | KOH (0.5) | 140 oC, 12 h | 62 | 65/35 | 40 |
6 | KOH (1.0) | 140 oC, 12 h | 93 | 98/2 | 91 (83) |
7 | CsOH (1.0) | 140 oC, 12 h | 89 | 98/2 | 87 (80) |
8 | NaOH (1.0) | 140 oC, 12 h | 50 | 18/82 | 9 |
9 | t-BuONa (1.0) | 140 oC, 12 h | 15 | <1/99 | Trace |
10 | t-BuOK (1.0) | 140 oC, 12 h | 84 | 92/8 | 77 |
11f | KOH (1.0) | 140 oC, 12 h | — | — | 0~Trace |
12g | KOH (1.0) | 140 oC, 12 h | — | — | Trace |
13h | KOH (1.0) | 140 oC, 24 h | 90 | 90/10 | 81 (71) |
14i | KOH (1.0) | 140 oC, 12 h | 86~98 | 67/33~87/13 | 57~85 |
15j | KOH (1.0) | 140 oC, 12 h | 16~28 | >99/1 | 16~28 |
16k | KOH (1.0) | 140 oC, 12 h | 13 | >99/1 | 13[ |
17l | KOH (1.0) | 140 oC, 12 h | 64 | 98/2 | 63 (55) |
18m | KOH (1.0) | 140 oC, 12 h | 98 | 94/6 | 92 (92) |
[1] |
(a) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
doi: 10.1021/ja910900p pmid: 26316601 |
(b) Zhang, S. Y.; He, G.; Nack, W. A.; Zhao, Y. S.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135, 2124.
doi: 10.1021/ja312277g pmid: 26316601 |
|
(c) Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9064.
doi: 10.1002/anie.201405508 pmid: 26316601 |
|
(d) Zhu, Z. Y.; He, J.; Wang, X. C.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 13194.
doi: 10.1021/ja508165a pmid: 26316601 |
|
(e) Mo, F. Y.; Dong, G. B. Science 2014, 345, 68.
doi: 10.1126/science.1254465 pmid: 26316601 |
|
(f) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science 2015, 349, 1532.
doi: 10.1126/science.aac8555 pmid: 26316601 |
|
(g) Li, B.; Darcel, C.; Dixneuf, P. H. Chem. Commun. 2014, 50, 5970.
doi: 10.1039/C4CC00931B pmid: 26316601 |
|
(h) Luo, W.; Yang, K.; Yin, B. Chin. J. Org. Chem. 2020, 40, 2290. (in Chinese)
doi: 10.6023/cjoc202004024 pmid: 26316601 |
|
(罗文坤, 杨凯, 尹标林, 有机化学, 2020, 40, 2290.)
doi: 10.6023/cjoc202004024 pmid: 26316601 |
|
[2] |
(a) Pasquinet, E.; Rocca, P.; F.; Marsais, Godard, A.; Quéguiner, G. Tetrahedron 1998, 54, 8771.
doi: 10.1016/S0040-4020(98)00507-9 |
(b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
doi: 10.1021/ja806781u |
|
(c) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056.
doi: 10.1021/ja904441a |
|
(d) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am. Chem. Soc. 2011, 133, 12439.
doi: 10.1021/ja205523e |
|
(e) Verdía, P.; González, E. J.; Rodríguez-Cabo, B.; Tojo, E. Green Chem. 2011, 13, 2768.
doi: 10.1039/c1gc15408g |
|
[3] |
(a) Niwa, T.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2007, 46, 2643.
doi: 10.1002/anie.200604472 pmid: 21786835 |
(b) Schipper, D. J.; Campeau, L.-C.; Fagnou, K. Tetrahedron 2009, 65, 3155.
doi: 10.1016/j.tet.2008.12.004 pmid: 21786835 |
|
(c) Burton, P. M.; Morris, J. A. Org. Lett. 2010, 12, 5359.
doi: 10.1021/ol102276e pmid: 21786835 |
|
(d) Song, G.; Su, Y.; Gong, X.; Han, K.; Li, X. Org. Lett. 2011, 13, 1968.
doi: 10.1021/ol200345a pmid: 21786835 |
|
(e) Duez, S.; Steib, A. K.; Manolikakes, S. M.; Knochel, P. Angew. Chem. Int. Ed. 2011, 50, 7686.
doi: 10.1002/anie.201103074 pmid: 21786835 |
|
(f) Shang, R.; Huang, Z.; Chu, L.; Fu, Y.; Liu, L. Org. Lett. 2011, 13, 4240.
doi: 10.1021/ol201750s pmid: 21786835 |
|
(g) Han, G.; Xu, H.; Hou, W. Chin. J. Org. Chem. 2022, 41, 391. (in Chinese)
pmid: 21786835 |
|
(韩高旭, 许洪涛, 侯卫, 有机化学, 2022, 41, 391.)
pmid: 21786835 |
|
[4] |
(a) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613.
doi: 10.1126/science.1208839 |
(b) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394.
doi: 10.1021/ar7001123 |
|
(c) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551.
doi: 10.1021/cr800278z |
|
(d) Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937.
doi: 10.1039/c0cs00063a |
|
(e) Muzart, J. Tetrahedron 2005, 61, 4179.
doi: 10.1016/j.tet.2005.02.026 |
|
(f) Detz, R. J.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2009, 6263.
|
|
(g) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; Vincentiis, F. D.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 4, 647.
|
|
(h) Bandini, M.; Cera, G.; Chiarucci, M. Synthesis 2012, 504.
|
|
(i) Chen, L.; Yin, X.-P.; Wang, C.-H.; Zhou, J. Org. Biomol. Chem. 2014, 12, 6033.
doi: 10.1039/C4OB00718B |
|
[5] |
(a) Watson, A. J. A.; Williams, J. M. J. Science 2010, 329, 635.
doi: 10.1126/science.1191843 pmid: 26639633 |
(b) Guillena, G.; Ramón, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611.
doi: 10.1021/cr9002159 pmid: 26639633 |
|
(c) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
doi: 10.1021/cr900202j pmid: 26639633 |
|
(d) Bähn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. ChemCatChem 2011, 3, 1853.
doi: 10.1002/cctc.201100255 pmid: 26639633 |
|
(e) Obora, Y. ACS Catal. 2014, 4, 3972.
doi: 10.1021/cs501269d pmid: 26639633 |
|
(f) Yang, Q.; Wang, Q.; Yu, Z. Chem. Soc. Rev. 2015, 44, 2305.
doi: 10.1039/c4cs00496e pmid: 26639633 |
|
(g) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem. Int. Ed. 2016, 55, 862.
doi: 10.1002/anie.201507521 pmid: 26639633 |
|
(h) Fujita, K.-I.; Yamaguchi, R. Synlett 2005, 560.
pmid: 26639633 |
|
(i) Ma, X.; Su, C.; Xu, Q. N -Alkylation by hydrogen autotransfer reactions, in: Hydrogen transfer reactions: reductions and beyond, InTopics in Current Chemistry, Vol.374, Eds.: Guillena, G.; Ramón, D. J., Springer, Berlin, Heidelberg, 2016, pp. 1-74.
pmid: 26639633 |
|
(j) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
doi: 10.1021/acs.chemrev.7b00340 pmid: 26639633 |
|
(k) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119, 2524.
doi: 10.1021/acs.chemrev.8b00306 pmid: 26639633 |
|
[6] |
Blank, B.; Kempe, R. J. Am. Chem. Soc. 2010, 132, 924.
doi: 10.1021/ja9095413 |
[7] |
(a) Obora, Y.; Ogawa, S.; Yamamoto, N. J. Org. Chem. 2012, 77, 9429.
doi: 10.1021/jo3019347 |
(b) Chaudhari, C.; Siddiki, S. M. A. H.; Shimizu, K. Tetrahedron Lett. 2013, 54, 6490.
doi: 10.1016/j.tetlet.2013.09.077 |
|
(c) Feng, T.; Li, H.; Young, D.; Lang, J. J. Org. Chem. 2017, 82, 4113.
doi: 10.1021/acs.joc.6b03095 |
|
(d) Rana, J.; Babu, R.; Subaramanian, M.; Balaraman, E. Org. Chem. Front. 2018, 5, 3250.
doi: 10.1039/C8QO00764K |
|
(e) Vellakkaran, M.; Das, J.; Bera, S.; Banerjee, D. Chem. Commun. 2018, 54, 12369.
doi: 10.1039/C8CC06370B |
|
(f) Mishra, A.; Dwivedi, A. D.; Shee, S.; Kundu, S. Chem. Commun. 2020, 56, 249.
doi: 10.1039/C9CC08448G |
|
(g) Kabadwal, L. M.; Bera, S.; Banerjee, D. Chem. Commun. 2020, 56, 4777.
doi: 10.1039/D0CC01593H |
|
(h) Onoda, M.; Fujita, K.-I. Org. Lett. 2020, 22, 7295.
doi: 10.1021/acs.orglett.0c02635 |
|
(i) Jana, A.; Kumar, A.; Maji, B. Chem. Commun. 2021, 57, 3026.
doi: 10.1039/D1CC00181G |
|
[8] |
Although bases were essential additives in TM-catalyzed alkylation reactions, they were not considered as the catalyst for the reactions (Ref. [5-7]). We observe this point in this work.
|
[9] |
Xiao, M.; Ren, D.; Xu, L.; Li, S.-S.; Yu, L.; Xiao, J. Org. Lett. 2017, 19, 5724.
doi: 10.1021/acs.orglett.7b02294 |
[10] |
(a) Feng, S.; Liu, C.; Li, Q.; Yu, X.; Xu, Q. Chin. Chem. Lett. 2011, 22, 1021.
doi: 10.1016/j.cclet.2011.03.014 |
(b) Liu, C.; Liao, S.; Li, Q.; Feng, S.; Sun, Q.; Yu, X.; Xu, Q. J. Org. Chem. 2011, 76, 5759.
doi: 10.1021/jo200862p |
|
(c) Yu, X.; Liu, C.; Jiang, L.; Xu, Q. Org. Lett. 2011, 13, 6184.
doi: 10.1021/ol202582c |
|
(d) Li, Q.; Fan, S.; Sun, Q.; Tian, H.; Yu, X.; Xu, Q. Org. Biomol. Chem. 2012, 10, 2966.
doi: 10.1039/c1ob06743e |
|
(e) Liao, S.; Yu, K.; Li, Q.; Tian, H.; Zhang, Z.; Yu, X.; Xu, Q. Org. Biomol. Chem. 2012, 10, 2973.
doi: 10.1039/c1ob06739g |
|
(f) Yu, X.; Jiang, L.; Li, Q.; Xie, Y.; Xu, Q. Chin. J. Chem. 2012, 30, 2322.
doi: 10.1002/cjoc.201200462 |
|
(g) Xu, Q.; Li, Q. Chin. J. Org. Chem. 2013, 33, 18. (in Chinese)
doi: 10.6023/cjoc201208016 |
|
徐清, 李强, 有机化学, 2013, 33, 18.)
doi: 10.6023/cjoc201208016 |
|
[11] |
(a) Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Angew. Chem. Int. Ed. 2014, 53, 225.
doi: 10.1002/anie.201308642 |
(b) Xu, Q.; Li, Q.; Zhu, X.; Chen, J. Adv. Synth. Catal. 2013, 355, 73.
doi: 10.1002/adsc.201200881 |
|
(c) Xu, Q.; Chen, J.; Liu, Q. Adv. Synth. Catal. 2013, 355, 697.
doi: 10.1002/adsc.201200996 |
|
(d) Li, S.; Li, X.; Li, Q.; Yuan, Q.; Shi, X.; Xu, Q. Green Chem. 2015, 17, 3260.
doi: 10.1039/C4GC02542C |
|
(e) Chen, J.; Li, Y.; Li, S.; Liu, J.; Zheng, F.; Zhang, Z.; Xu, Q. Green Chem. 2017, 19, 623.
doi: 10.1039/C6GC02518H |
|
(f) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Green Chem. 2015, 17, 2774.
doi: 10.1039/C5GC00284B |
|
(g) Xu, Q.; Xie, H.; Zhang, E.-L.; Ma, X.; Chen, J.; Yu, X.-C.; Li, H. Green Chem. 2016, 18, 3940.
doi: 10.1039/C6GC00938G |
|
(h) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649.
doi: 10.1002/adsc.201700227 |
|
(i) Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Bao, J.; Li, H.; Yu, L.; Xu, Q. Org. Biomol. Chem. 2017, 15, 9638.
doi: 10.1039/C7OB02461D |
|
(j) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L.-B. Green Chem. 2018, 20, 3408.
doi: 10.1039/C8GC00931G |
|
(k) Ma, X.; Yu, J.; Yan, R.; Yan, M.; Xu, Q. J. Org. Chem. 2019, 84, 11294.
doi: 10.1021/acs.joc.9b01670 |
|
[12] |
(a) Shi, X.; Guo, J.; Liu, J.; Ye, M.; Xu, Q. Chem. Eur. J. 2015, 21, 9988.
doi: 10.1002/chem.201501184 pmid: 30791215 |
(b) Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Catal. Lett. 2016, 146, 2139.
doi: 10.1007/s10562-016-1818-2 pmid: 30791215 |
|
(c) Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Green Chem. 2017, 19, 2945.
doi: 10.1039/C7GC00977A pmid: 30791215 |
|
(d) Liu, H.; Han, F.; Li, H.; Liu, J.; Xu, Q. Org. Biomol. Chem. 2020, 18, 7079.
doi: 10.1039/D0OB01549K pmid: 30791215 |
|
(e) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Cao, H.; Zhang, X.; Xu, Q. ChemSusChem 2019, 12, 3043.
doi: 10.1002/cssc.201900265 pmid: 30791215 |
|
(f) Wang, Q.; Zhang, X.; Han, F.; Liu, J.; Xu, Q. ChemSusChem 2021, 14, 2866.
doi: 10.1002/cssc.202100703 pmid: 30791215 |
|
[13] |
For similar findings from other groups: (a) Zhang, W.; Liu, M.; Wu, H.; Ding, J.; Cheng, J;. Tetrahedron Lett. 2008, 49, 5336.
doi: 10.1016/j.tetlet.2008.06.061 |
(b) Wang, X.; Wang, D. Z. Tetrahedron 2011, 67, 3406.
doi: 10.1016/j.tet.2011.03.052 |
|
(c) Donthiri, R. R.; Patil, R. D.; Adimurthy, S. Eur. J. Org. Chem. 2012, 4457.
|
|
(d) Xu, J.; Zhuang, R.; Bao, L.; Tang, G.; Zhao, Y. Green Chem. 2012, 14, 2384.
doi: 10.1039/c2gc35714c |
|
[14] |
Xu, Q.; Li, S.; Chen, J.; Yuan, X.; Zhang, Z. A method for dehydrative C-alkylation of methyl N-heteroarenes, Chin. Patent ZL 201410723220.7 (applied: 2014.12.09; authorized, 2018.09.04).
|
[15] |
See the Supporting Information for details.
|
[16] |
1H NMR analysis of commercial 2a reveals that it contains ca. 0.82% PhCHO,[15] which may catalyze the reaction in some extent according to our previous findings.[10b-10e]
|
[17] |
This is most possibly becaue the semiconductor grade KOH kept under anhydrous conditons is purer and contains less water, thus being more effective than the AR grade KOH in the reaction.
|
[18] |
(a) Cha, J. S. Org. Pro. Res. Dev. 2006, 10, 1032.
doi: 10.1021/op068002c |
(b) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
|
|
[19] |
The observed only moderate yield of 5b may be due to its side reactions (such as the Cannizzaro reaction) in the presence of a strong base at heating.
|
[20] |
(a) Pascal, L.; Eynde, J. J. V.; Haverbeke, Y. V.; Dubois, P. Lett. Org. Chem. 2004, 1, 112.
doi: 10.2174/1570178043488527 |
(b) Eynde, J. J. V.; Pascal, L.; Haverbeke, Y. V.; Dubois, P. Synth. Commun. 2001, 31, 3167.
doi: 10.1081/SCC-100105893 |
|
(c) Jaung, J.-y.; Matsuoka, M.; Fukunishi, K. Dyes Pigm. 1996, 31, 141.
doi: 10.1016/0143-7208(95)00096-8 |
|
[21] |
Considerable amounts of PhCH2OH (2a), one of the Cannizzaro products, was observed by GC-MS analysis of the reaction mixture.[15] Thus, most likely, the Cannizzaro side-reaction and neutralization of KOH by in situ generated PhCOOH, the other Cannizzaro product, led to ineffective reaction and low yield of 4a.
|
[22] |
(a) Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.
doi: 10.1021/cr020080k |
(b) Bradshaw, J. S.; Izatt, R. M. Acc. Chem. Res. 1997, 30, 338.
doi: 10.1021/ar950211m |
|
(c) An, H.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. 1992, 92, 543.
doi: 10.1021/cr00012a004 |
|
[23] |
Tan, Z.; Jiang, H.; Zhang, M. Chem. Commun. 2016, 52, 9359.
doi: 10.1039/C6CC03996K |
[24] |
Mishra, A.; Dwivedi, A. D.; Shee, S.; Kundu, S. Chem. Commun. 2020, 56, 249.
doi: 10.1039/C9CC08448G |
[25] |
Mrsic, N.; Jerphagnon, T.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Adv. Synth. Catal. 2009, 351, 2549-2552.
doi: 10.1002/adsc.200900522 |
[26] |
Daw, P.; Kumar, A.; Espinosa-Jalapa, N. A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2018, 8, 7734.
doi: 10.1021/acscatal.8b02208 |
[27] |
Guo, B.; Li, H.-X.; Zhang, S.-Q.; Young, D. J.; Lang, J.-P. ChemCatChem 2018, 10, 5627.
doi: 10.1002/cctc.201801525 |
[28] |
Zeng, Y.-H.; Qian, B.; Li, Y.-J.; Bao, H.-l. Synthesis 2018, 50, 3250.
doi: 10.1055/s-0037-1609965 |
[29] |
Feng, T.-Y.; Li, H.-X.; Young, D. J.; Lang, J.-P. J. Org. Chem. 2017, 82, 4113.
doi: 10.1021/acs.joc.6b03095 |
[30] |
Jana, A.; Kumar, A.; Maji, B. Chem. Commun. 2021, 57, 3026.
doi: 10.1039/D1CC00181G |
[31] |
Jerzy, C.; Teresa, G.-J. Rocz. Chem. 1969, 43, 1037.
|
[32] |
Duke III, C. B.; Letterman, R. G.; Johnson, J. O.; Barr, J. W.; Hu, S.; Ross II, C. R.; Webster, C. E.; Burkey, T. J. Organometallics 2014, 33, 485.
doi: 10.1021/om400928k |
[33] |
Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martín-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358.
pmid: 11457403 |
[34] |
Nishikawa, S.; Hayashi, E.-I.; Kumazawa, Z.; Kashimura, N. Agric. Biol. Chem. 1989, 53, 3387.
|
[35] |
Yang, X.-L.; Xu, C.-M.; Lin, S.-M.; Chen, J.-X.; Ding, J.-C.; Wu, H.-Y.; Su, W.-K. J. Braz. Chem. Soc. 2010, 21, 37.
doi: 10.1590/S0103-50532010000100007 |
[36] |
Nakamura, Y.; Azuma, A.; Kato, S.; Oe, Y.; Ohta, T. Chem. Lett. 2019, 48, 1192.
doi: 10.1246/cl.190488 |
[1] | 张勇, 田志高, 黄琳, 侯秋飞, 范红红, 汪万强. α-氰醇甲磺酸酯在合成α-氨基腈类化合物中的应用[J]. 有机化学, 2024, 44(2): 561-572. |
[2] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[3] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[4] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[5] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[6] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[7] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[8] | 鄢伯钰, 吴阶良, 邓金飞, 陈丹, 叶秀深, 姚秋丽. 光诱导醇的直接脱羟基衍生化研究进展[J]. 有机化学, 2023, 43(9): 3055-3066. |
[9] | 张晓雨, 李欣燕, 崔冰, 邵志晖, 赵铭钦. 四氢-β-咔啉衍生物的设计、合成及抗氧化性能研究[J]. 有机化学, 2023, 43(8): 2885-2894. |
[10] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[11] | 石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺. 室温下酯与伯硫醇的硫酯化反应[J]. 有机化学, 2023, 43(7): 2499-2505. |
[12] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[13] | 刘甜甜, 张鸿鹏, 焦晓梦, 白银娟. 多信号同时检测生物硫醇荧光探针的研究进展[J]. 有机化学, 2023, 43(6): 2081-2095. |
[14] | 鲍志成, 李慕尧, 王剑波. 铜催化芳基重氮乙酸酯与双[(频哪醇)硼基]甲烷的偶联反应[J]. 有机化学, 2023, 43(5): 1808-1814. |
[15] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||