有机化学 ›› 2022, Vol. 42 ›› Issue (9): 2793-2805.DOI: 10.6023/cjoc202205016 上一篇 下一篇
研究论文
梁光平a, 王维b, 朱绪秀a, 梁光焰c, 杨俊a,*(), 王道平c,*()
收稿日期:
2022-05-11
修回日期:
2022-07-04
发布日期:
2022-08-17
通讯作者:
杨俊, 王道平
基金资助:
Guangping Lianga, Wei Wangb, Xuxiu Zhua, Guangyan Liangc, Jun Yanga(), Daoping Wangc()
Received:
2022-05-11
Revised:
2022-07-04
Published:
2022-08-17
Contact:
Jun Yang, Daoping Wang
Supported by:
文章分享
为寻找新型的抗肿瘤药物, 合成了一系列齐多夫定与N-苯基喹唑啉-4-胺骨架的拼接产物. 通过噻唑蓝(MTT)法评价它们对人肺癌细胞(A549)、人肺癌耐药细胞(A549/DDP)、人肝癌细胞(HepG2)、人宫颈癌细胞(Hela)、人乳腺癌细胞(MCF-7)的抑制活性. 采用酶联免疫法评价合成衍生物对表皮生长因子受体(EGFR)的抑制作用. 结果显示大多数目标产物对5种细胞具有显著的抗肿瘤活性. 特别是1-((2R,5S)-5-羟甲基-4-(4-(((4-((2-氯-4-碘苯基)氨基)-6-甲氧基喹唑啉-7-基)氧基)甲基)-1H-1,2,3-三氮唑-1-基)四氢呋喃-2-基)-5-甲基嘧啶-2,4(1H,3H)-二酮(8b), 对HepG2细胞株具有最好的抗肿瘤活性, 其IC50值为(0.79±0.18) μmol/L, 抗肿瘤活性明显优于阳性对照厄洛替尼和齐多夫定. 1-((2R,5S)-5-羟甲基-4-(4-(((4-((3-氯-4-氟苯基)氨基)-6-甲氧基喹唑啉-7-基)氧基)甲基)-1H-1,2,3-三氮唑-1-基)四氢呋喃-2-基)-5-甲基嘧啶- 2,4(1H,3H)-二酮(8a)和1-((2R,5S)-5-羟甲基-4-(4-(((4-((3,4,5-三氟苯基)氨基)-7-甲氧基喹唑啉-6-基)氧基)甲基)-1H-1,2,3-三氮唑-1-基)四氢呋喃-2-基)-5-甲基嘧啶-2,4(1H,3H)-二酮(8l)对A549、Hela、A549/DDP肿瘤细胞都表现出良好的活性, 且IC50值小于5 μmol/L. 分子对接结果表明化合物8a和8l与EGFR的多个氨基酸残基具有良好的结合作用.
梁光平, 王维, 朱绪秀, 梁光焰, 杨俊, 王道平. 新型齐多夫定与4-苯胺喹唑啉骨架拼接产物的合成及体外抗肿瘤活性[J]. 有机化学, 2022, 42(9): 2793-2805.
Guangping Liang, Wei Wang, Xuxiu Zhu, Guangyan Liang, Jun Yang, Daoping Wang. Synthesis and in Vitro Anti-tumor Activity of Novel Spliced Compounds of Zidovudine and 4-Anilinoquinazolines[J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2793-2805.
Compd. | (IC50±SD)/(μmol•L–1) | ||||
---|---|---|---|---|---|
HepG2 | A549 | Hela | MCF-7 | A549/DDP | |
8a | 1.25±0.28 | 2.13±0.31 | 1.79±0.23 | 6.13±0.66 | 4.94±1.09 |
8b | 0.79±0.18 | 18.51±0.99 | 7.27±0.42 | >40 | 28.83±1.27 |
8c | 29.14±1.16 | 8.89±0.39 | 5.53±0.75 | 5.08±0.59 | 11.48±0.92 |
8d | 10.85±0.55 | 19.07±1.41 | 21.89±1.33 | >40 | 37.49±1.20 |
8e | 5.54±0.25 | 26.75±1.05 | 7.22±0.85 | 5.12±0.78 | 33.16±1.43 |
8f | 35.22±0.82 | 5.22±0.44 | 2.38±0.17 | 1.29±0.21 | 8.91±0.36 |
8g | 37.93±0.88 | >40 | 17.03±0.86 | 22.96±0.71 | >40 |
8h | >40 | >40 | >40 | 23.43±1.11 | >40 |
8i | 3.17±0.74 | >40 | 21.78±0.47 | 16.33±0.22 | >40 |
8j | 5.40±0.92 | >40 | 17.47±0.86 | 2.78±0.39 | >40 |
8k | 2.51±0.82 | 7.27±0.95 | 12.40±1.04 | 1.18±0.13 | 11.63±0.64 |
8l | 7.09±0.46 | 2.37±0.61 | 1.04±0.33 | 1.32±0.26 | 3.02±0.42 |
8m | 20.04±1.01 | >40 | >40 | 21.89±0.83 | >40 |
8n | >40 | >40 | >40 | 27.16±1.07 | >40 |
8o | 28.87±1.12 | 6.95±0.72 | 3.04±0.51 | 3.12±0.35 | 8.88±0.89 |
8p | >40 | 38.50±1.39 | 19.15±0.99 | 12.21±0.69 | 34.39±1.22 |
8q | >40 | >40 | >40 | >40 | >40 |
8r | 1.23±0.15 | >40 | 31.44±1.32 | 8.57±0.65 | >40 |
Erlotinib | 8.91±0.83 | 1.39±0.49 | 0.42±0.22 | 0.091±0.28 | 2.37±0.39 |
AZT | 6.07±0.53 | 9.33±0.93 | >40 | 36.87±1.18 | 14.51±0.77 |
Compd. | (IC50±SD)/(μmol•L–1) | ||||
---|---|---|---|---|---|
HepG2 | A549 | Hela | MCF-7 | A549/DDP | |
8a | 1.25±0.28 | 2.13±0.31 | 1.79±0.23 | 6.13±0.66 | 4.94±1.09 |
8b | 0.79±0.18 | 18.51±0.99 | 7.27±0.42 | >40 | 28.83±1.27 |
8c | 29.14±1.16 | 8.89±0.39 | 5.53±0.75 | 5.08±0.59 | 11.48±0.92 |
8d | 10.85±0.55 | 19.07±1.41 | 21.89±1.33 | >40 | 37.49±1.20 |
8e | 5.54±0.25 | 26.75±1.05 | 7.22±0.85 | 5.12±0.78 | 33.16±1.43 |
8f | 35.22±0.82 | 5.22±0.44 | 2.38±0.17 | 1.29±0.21 | 8.91±0.36 |
8g | 37.93±0.88 | >40 | 17.03±0.86 | 22.96±0.71 | >40 |
8h | >40 | >40 | >40 | 23.43±1.11 | >40 |
8i | 3.17±0.74 | >40 | 21.78±0.47 | 16.33±0.22 | >40 |
8j | 5.40±0.92 | >40 | 17.47±0.86 | 2.78±0.39 | >40 |
8k | 2.51±0.82 | 7.27±0.95 | 12.40±1.04 | 1.18±0.13 | 11.63±0.64 |
8l | 7.09±0.46 | 2.37±0.61 | 1.04±0.33 | 1.32±0.26 | 3.02±0.42 |
8m | 20.04±1.01 | >40 | >40 | 21.89±0.83 | >40 |
8n | >40 | >40 | >40 | 27.16±1.07 | >40 |
8o | 28.87±1.12 | 6.95±0.72 | 3.04±0.51 | 3.12±0.35 | 8.88±0.89 |
8p | >40 | 38.50±1.39 | 19.15±0.99 | 12.21±0.69 | 34.39±1.22 |
8q | >40 | >40 | >40 | >40 | >40 |
8r | 1.23±0.15 | >40 | 31.44±1.32 | 8.57±0.65 | >40 |
Erlotinib | 8.91±0.83 | 1.39±0.49 | 0.42±0.22 | 0.091±0.28 | 2.37±0.39 |
AZT | 6.07±0.53 | 9.33±0.93 | >40 | 36.87±1.18 | 14.51±0.77 |
Compd. | Inhibition rate/% | ||||
---|---|---|---|---|---|
0.01 μmol/L | 0.1 μmol/L | 1 μmol/L | 10 μmol/L | 100 μmol/L | |
8a | 29.58 | 50.59 | 55.15 | 69.79 | 73.95 |
8b | 24.99 | 34.88 | 49.90 | 54.66 | 59.82 |
8c | 15.03 | 24.72 | 39.65 | 50.24 | 64.46 |
8d | 15.18 | 24.99 | 39.35 | 50.09 | 59.93 |
8e | 14.77 | 25.30 | 39.70 | 54.75 | 60.60 |
8f | 19.79 | 34.91 | 44.98 | 50.03 | 59.80 |
8g | 25.56 | 34.97 | 50.16 | 59.80 | 64.83 |
8h | 20.03 | 35.52 | 45.42 | 50.04 | 55.50 |
8i | 14.70 | 20.22 | 24.61 | 44.65 | 60.28 |
8j | 20.25 | 29.72 | 39.76 | 50.27 | 60.07 |
8k | 14.38 | 24.84 | 40.41 | 59.75 | 69.80 |
8l | 40.31 | 49.67 | 54.58 | 65.42 | 80.55 |
8m | 15.02 | 19.91 | 29.79 | 40.00 | 49.95 |
8n | 10.22 | 20.28 | 24.54 | 40.27 | 54.23 |
8o | 19.65 | 29.78 | 40.41 | 54.23 | 74.39 |
8p | 9.98 | 20.10 | 30.25 | 50.22 | 64.25 |
8q | 15.89 | 25.19 | 35.48 | 44.19 | 54.93 |
8r | 9.67 | 19.71 | 39.76 | 44.60 | 55.29 |
Erlotinib | 49.21 | 60.00 | 64.87 | 75.38 | 79.91 |
AZT | 29.90 | 40.26 | 50.06 | 54.88 | 64.78 |
Compd. | Inhibition rate/% | ||||
---|---|---|---|---|---|
0.01 μmol/L | 0.1 μmol/L | 1 μmol/L | 10 μmol/L | 100 μmol/L | |
8a | 29.58 | 50.59 | 55.15 | 69.79 | 73.95 |
8b | 24.99 | 34.88 | 49.90 | 54.66 | 59.82 |
8c | 15.03 | 24.72 | 39.65 | 50.24 | 64.46 |
8d | 15.18 | 24.99 | 39.35 | 50.09 | 59.93 |
8e | 14.77 | 25.30 | 39.70 | 54.75 | 60.60 |
8f | 19.79 | 34.91 | 44.98 | 50.03 | 59.80 |
8g | 25.56 | 34.97 | 50.16 | 59.80 | 64.83 |
8h | 20.03 | 35.52 | 45.42 | 50.04 | 55.50 |
8i | 14.70 | 20.22 | 24.61 | 44.65 | 60.28 |
8j | 20.25 | 29.72 | 39.76 | 50.27 | 60.07 |
8k | 14.38 | 24.84 | 40.41 | 59.75 | 69.80 |
8l | 40.31 | 49.67 | 54.58 | 65.42 | 80.55 |
8m | 15.02 | 19.91 | 29.79 | 40.00 | 49.95 |
8n | 10.22 | 20.28 | 24.54 | 40.27 | 54.23 |
8o | 19.65 | 29.78 | 40.41 | 54.23 | 74.39 |
8p | 9.98 | 20.10 | 30.25 | 50.22 | 64.25 |
8q | 15.89 | 25.19 | 35.48 | 44.19 | 54.93 |
8r | 9.67 | 19.71 | 39.76 | 44.60 | 55.29 |
Erlotinib | 49.21 | 60.00 | 64.87 | 75.38 | 79.91 |
AZT | 29.90 | 40.26 | 50.06 | 54.88 | 64.78 |
Compd. | 结合能/ (kJ•mol–1) | 氢键 | 疏水作用 | |||||
---|---|---|---|---|---|---|---|---|
数量 | 键长/nm | 残基 | 数量 | 残基 | ||||
8a | –35.6 | 2 | 0.310 0.314 | Asn469 Asn469 | 12 | Arg470, Ser468, Gly471, Ile467, Cys446, Thr450, Val481, Cys482, Glu472, Asn449, Ile466, Arg470 | ||
8l | –33.9 | 3 | 0.297 0.300 0.318 | Lys407 Gly410 Gln408 | 11 | Thr406, Gln8, Gly9, Thr10, Ser11, Met87, Lys322, Ser324, Leu325, His346, His409 | ||
AZT | –25.5 | 6 | 0.312 0.281 0.316 0.309 0.327 0.293 | Pro272 Arg300 Ser433 Arg403 Asn274 Arg273 | 3 | Tyr275, Val299, Arg405 | ||
Erlotinib | –25.1 | 2 | 0.308 0.309 | Arg141 Gln139 | 8 | Ile189, Ser137, Met154, Ile138, Glu136, Phe156, Trp140, Met152 |
Compd. | 结合能/ (kJ•mol–1) | 氢键 | 疏水作用 | |||||
---|---|---|---|---|---|---|---|---|
数量 | 键长/nm | 残基 | 数量 | 残基 | ||||
8a | –35.6 | 2 | 0.310 0.314 | Asn469 Asn469 | 12 | Arg470, Ser468, Gly471, Ile467, Cys446, Thr450, Val481, Cys482, Glu472, Asn449, Ile466, Arg470 | ||
8l | –33.9 | 3 | 0.297 0.300 0.318 | Lys407 Gly410 Gln408 | 11 | Thr406, Gln8, Gly9, Thr10, Ser11, Met87, Lys322, Ser324, Leu325, His346, His409 | ||
AZT | –25.5 | 6 | 0.312 0.281 0.316 0.309 0.327 0.293 | Pro272 Arg300 Ser433 Arg403 Asn274 Arg273 | 3 | Tyr275, Val299, Arg405 | ||
Erlotinib | –25.1 | 2 | 0.308 0.309 | Arg141 Gln139 | 8 | Ile189, Ser137, Met154, Ile138, Glu136, Phe156, Trp140, Met152 |
[1] |
(a) Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Ca-Cancer J. Clin. 2022, 72, 7.
doi: 10.3322/caac.21708 |
(b) Fidler, M. M.; Bray, F.; Soerjomataram, I. Scand. J. Public Healt. 2018, 46, 27.
|
|
[2] |
Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Ca-Cancer J. Clin. 2021, 71, 209
doi: 10.3322/caac.21660 |
[3] |
Burstein, H. J.; Krilov, L.; Aragon-Ching, J. B.; Baxter, N. N.; Chiorean, E. G.; Chow, W. A.; Groot, J. F. D.; Devine, S. M.; G DuBois, S.; El-Deiry, W. S.; Epstein, A. S.; Heymach, J.; Jones, J. A.; Mayer, D. K.; Miksad, R. A.; Pennell, N. A.; Sabel, M. S.; Schilsky, R. L.; Schuchter, L. M.; Tung, N.; Winkfield, K. M.; Wirth, L. J.; Dizon, D. S. J. Clin. Oncol. 2017, 35, 1341.
doi: 10.1200/JCO.2016.71.5292 pmid: 28148207 |
[4] |
(a) Chong, C. R.; Jänne, P. A. Nat. Med. 2013, 19, 1389.
doi: 10.1038/nm.3388 |
(b) Liu, Q.; Yu, S.; Zhao, W.; Qin, S.; Chu, Q.; Wu, K. Mol. Cancer 2018, 17, 53.
doi: 10.1186/s12943-018-0793-1 |
|
(c) Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Br. J. Cancer 2019, 121, 725.
doi: 10.1038/s41416-019-0573-8 |
|
(d) Pao, W.; Miller, V. A.; Politi, K. A.; Riely, G. J.; Somwar, R.; Zakowski, M. F.; Kris, M. G.; Varmus, H. PLoS Med. 2005, 2, 225.
|
|
[5] |
Lu, X.; Yu, L.; Zhang, Z.; Ren, X.; Smaill, J. B.; Ding, K. Med. Res. Rev. 2018, 38, 1550.
doi: 10.1002/med.21488 |
[6] |
(a) Han, C.; Ren, J.; Su, F.; Hu, X.; Li, M.; Wang, Z.; Wu, L. Anti-Cancer Agents Med. Chem. 2020, 20, 724
doi: 10.2174/1871520620666200302113206 |
(b) Chen, L.; Zhang, Y.; Wang, C.; Tang, Z.; Meng, Q.; Sun, H.; Qi, Y.; Ma, X.; Li, L.; Li, Y.; Xu, Y. Bioorg. Chem. 2021, 114, 105045.
doi: 10.1016/j.bioorg.2021.105045 |
|
[7] |
Bazarbachi, A.; Nasr, R.; El-Sabban, M.; Mahé, A.; Mahieux, R.; Gessain, A.; Darwiche, N.; Dbaibo, G.; Kersual, J.; Zermati, Y.; Dianoux, L.; Chelbi-Alix, M. K.; Thé, H. D.; Hermine, O. Leukemia 2000, 14, 716.
doi: 10.1038/sj.leu.2401742 pmid: 10764160 |
[8] |
(a) Schneider, M. A.; Buzdin, A. A.; Weber, A.; Clavien, P. A.; Borger, P. Viruses 2021, 13, 2396.
doi: 10.3390/v13122396 |
(b) Lewandowski, D.; Lewandowska, M.; Ruszkowski, P.; Pińska, A.; Schroeder, G. PLoS One 2015, 10, e0126251.
doi: 10.1371/journal.pone.0126251 |
|
(c) Namba, T.; Kodama, R.; Moritomo, S.; Hoshino, T.; Mizushima, T. Cell Death Dis. 2015, 6, e1795.
doi: 10.1038/cddis.2015.172 |
|
[9] |
(a) Collier, A. C.; Helliwell, R. J.; Keelan, J. A.; Paxton, J. W.; Mitchell, M. D.; Tingle, M. D. Toxicol. Appl. Pharmacol. 2003, 192, 164.
doi: 10.1016/S0041-008X(03)00274-6 pmid: 20585095 |
(b) Humer, J.; Ferko, B.; Waltenberger, A.; Rapberger, R.; Pehamberger, H.; Muster, T. Melanoma Res. 2008, 18, 314.
doi: 10.1097/CMR.0b013e32830aaaa6 pmid: 20585095 |
|
(c) Morgan, R. J.; Newman, E. M.; Sowers, L.; Scanlon, K.; Harrison, J.; Akman, S.; Leong, L.; Margolin, K.; Niland, J.; Raschko, J.; Somlo, G.; Carroll, M.; Chow, W.; Tetef, M.; Hamasaki, V.; Yen, Y.; Doroshow, J. H. Cancer Chemother. Pharmacol. 2003, 51, 459.
doi: 10.1007/s00280-003-0605-0 pmid: 20585095 |
|
(d) Wu, Y.; Xiao, Q.; Jiang, Y.; Fu, H.; Ju, Y.; Zhao, Y. Nucleosides, Nucleotides Nucleic Acids 2004, 23, 1797.
doi: 10.1081/NCN-200034057 pmid: 20585095 |
|
(e) Cook, L. B.; Phillips, A. A. Blood 2021, 137, 459.
doi: 10.1182/blood.2019004045 pmid: 20585095 |
|
(f) Malpica, L.; Castro, D.; Enriquez, D. J.; Oviedo-Pecho, R.; Peña, C.; Idrobo, H.; Fiad, L.; Prates, M.; Valcarcel, B.; Paredes, A.; Sánchez, G.; Moisés, C.; Castillo, J. J.; Villela, L.; Ramos, J. C.; Biglione, M.; Beltran, B. E. Leuk. Lymphoma 2022, 63, 315.
doi: 10.1080/10428194.2021.1984455 pmid: 20585095 |
|
(g) Bazarbachi, A.; Plumelle, Y.; Ramos, J. C.; Tortevoye, P.; Otrock, Z.; Taylor, G.; Gessain, A.; Harrington, W.; Panelatti, G.; Hermine, O. J. Clin. Oncol. 2010, 28, 4177.
doi: 10.1200/JCO.2010.28.0669 pmid: 20585095 |
|
[10] |
(a) Butti, R.; Das, S.; Gunasekaran, V. P.; Yadav, A. S.; Kumar, D.; Kundu, G. C. Mol. Cancer 2018, 17, 34.
doi: 10.1186/s12943-018-0797-x |
(b) Talukdar, S.; Emdad, L.; Das, S. K.; Fisher, P. B. Adv. Cancer Res. 2020, 147, 161.
|
|
[11] |
(a) Khattab, R. R.; Alshamari, A. K.; Hassan, A. A.; Elganzory, H. H.; El-Sayed, W. A.; Awad, H. M.; Nossier, E. S.; Hassan, N. A. J. Enzyme Inhib. Med. Chem. 2021, 36, 504.
doi: 10.1080/14756366.2020.1871335 pmid: 28676407 |
(b) Nipate, A. S.; Jadhav, C. K.; Chate, A. V.; Deshmukh, T. R.; Sarkate, A. P.; Gill, C. H. ChemistrySelect 2021, 6, 5173.
doi: 10.1002/slct.202101035 pmid: 28676407 |
|
(c) Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. Drug Discovery Today 2017, 22, 1572.
doi: S1359-6446(17)30104-6 pmid: 28676407 |
|
[12] |
Plyasova, A. A.; Berrino, E.; Khan, I. I.; Veselovsky, A. V.; Pokrovsky, V. S.; Angeli, A.; Ferraroni, M.; Supuran, C. T.; Pokrovskaya, M. V.; Alexandrova, S. S.; Gladilina, Y. A.; Sokolov, N. N.; Hilal, A.; Carta, F.; Zhdanov, D. D. J. Med. Chem. 2021, 64, 11432.
doi: 10.1021/acs.jmedchem.1c00756 pmid: 34283610 |
[13] |
Wang, Y.; Lv, Z.; Chen, F.; Wang, X.; Gou, S. J. Med. Chem. 2021, 64, 12877.
doi: 10.1021/acs.jmedchem.1c01013 |
[14] |
Li, R.-D.; Zhang, X.; Li, Q.-Y.; Ge, Z.-M.; Li, R.-T. Bioorg. Med. Chem. Lett. 2011, 21, 3637.
doi: 10.1016/j.bmcl.2011.04.096 |
[15] |
(a) de Alencar, D.; Gonçalves, J.; Vieira, A.; Cerqueira, S. A.; Sebastião, C.; Leitão, M.; Francescato, G.; Antenori, P.; Soares, H.; Petronilho, A. Molecules 2021, 26, 6720.
doi: 10.3390/molecules26216720 |
(b) Berrino, E.; Angeli, A.; Zhdanov, D.; Kiryukhina, A.; Milaneschi, A.; De Luca, A.; Bozdag, M.; Carradori, S.; Selleri, S.; Bartolucci, G.; Peat, T.; Ferraroni, M.; Supuran, C.; Carta, F. J. Med. Chem. 2020, 63, 7392.
doi: 10.1021/acs.jmedchem.0c00636 |
|
[16] |
Zhao, Y.-J.; Meng, J.; Hu, R.-J.; Qie, Z.-G. Coal Chem. Ind. (Shijiazhuang, China) 2021, 44, 138. (in Chinese)
|
(赵永杰, 孟建, 胡瑞娟, 郄正刚, 煤炭与化工, 2021, 44, 138.)
|
|
[17] |
Jassem, A. M.; Dhumad, A. M. ChemistrySelect 2021, 6, 2641.
doi: 10.1002/slct.202004755 |
[18] |
Liang, G. P.; Yang, J.; Zhu, X. X.; Wen, L. D. CN 114437161, 2022.
|
[1] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[2] | 徐利军, 李宗军, 韩福社, 高翔. N,N-二甲基甲酰胺促进的富勒烯稠合噁唑啉衍生物的合成[J]. 有机化学, 2024, 44(1): 242-250. |
[3] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[4] | 曹瑞霞, 贾玉萍. 含香豆素的吡咯并[2,3-d]嘧啶衍生物的合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3304-3311. |
[5] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[6] | 张晓轲, 郑相如, 王朝永. 偶氮次甲基亚胺与氮杂二烯前体的[4+3]环加成反应构建功能化四氮杂䓬衍生物[J]. 有机化学, 2023, 43(9): 3180-3187. |
[7] | 刘长俊, 胡慧玲, 刘宬宏, 朱超杰, 唐天地. 介孔ETS-10沸石担载Pd高效催化内炔氧化制备1,2-二酮[J]. 有机化学, 2023, 43(8): 2953-2960. |
[8] | 张维舒, 聂礼飞, Khurshed Bozorov, 阿吉艾克拜尔•艾萨, 赵江瑜. 2,5-二氨基噻吩-3,4-二羧酸二乙酯衍生物的合成及抗肿瘤活性研究[J]. 有机化学, 2023, 43(7): 2543-2552. |
[9] | 武学丹, 徐瑞祥, 方霄龙, 张克华, 金杰. 青藤碱N-四氮唑和N-噁二唑杂环衍生物的设计与合成[J]. 有机化学, 2023, 43(7): 2506-2518. |
[10] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[11] | 庞盼杏, 宁蓉, 祝创, 黄文洁, 马献力, 蒋彩娜, 李芳耀, 周小群. 苦参碱缩氨基脲类化合物的合成及其体外抗肿瘤活性研究[J]. 有机化学, 2023, 43(6): 2126-2135. |
[12] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[13] | 王启帆, 张源泉, 幸丽, 周远香, 龚晨裕, 何帮灿, 张念, 吴拥军, 薛伟. 含1,2,4-三唑并[3,4-b]-1,3,4-噻二唑杨梅素衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(4): 1525-1536. |
[14] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[15] | 陈深豪, 邹松, 席婵娟. 光催化苯乙烯与BrCF2CO2Me的2∶2偶联反应: 双-二氟乙酸酯己雌酚衍生物的合成[J]. 有机化学, 2023, 43(3): 1157-1167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||