有机化学 ›› 2022, Vol. 42 ›› Issue (10): 3280-3294.DOI: 10.6023/cjoc202206032 上一篇 下一篇
所属专题: 不对称催化专辑
综述与进展
收稿日期:
2022-05-23
修回日期:
2022-07-06
发布日期:
2022-11-02
通讯作者:
刘媛媛
基金资助:
Received:
2022-05-23
Revised:
2022-07-06
Published:
2022-11-02
Contact:
Yuanyuan Liu
Supported by:
文章分享
手性叔胺作为一种重要的化合物骨架, 存在于各种药物、天然产物和有机功能材料中, 因而受到合成化学家们的重视. 目前已有几种不同的经历金属氢物种的合成手性叔胺的方法被报道. 根据不同的反应类型, 本文从不对称氢胺化、不对称氢化、不对称还原胺化和“借氢”策略中醇的不对称胺化四个方面对近年来的研究进展进行总结. 同时介绍了各策略中相应反应的机理, 并对该领域的未来发展做了展望.
范天翔, 刘媛媛. 经历金属氢物种制备手性叔胺的不对称催化研究进展[J]. 有机化学, 2022, 42(10): 3280-3294.
Tianxiang Fan, Yuanyuan Liu. Recent Advances in Synthesis of Chiral Tertiary Amines via Asymmetric Catalysis Involving Metal-Hydride Species[J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3280-3294.
[1] |
(a) Onyeagusi, C. I.; Malcolmson, S. J. ACS Catal. 2020, 10, 12507.
doi: 10.1021/acscatal.0c03569 pmid: 18095713 |
(b) Robert-Paganin, J.; Pylypenko, O.; Kikuti, C.; Sweeney, H. L.; Houdusse, A. Chem. Rev. 2020, 120, 5.
doi: 10.1021/acs.chemrev.9b00264 pmid: 18095713 |
|
(c) Cai, M.; Xu, K.; Li, Y.; Nie, Z.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2021, 143, 1078.
doi: 10.1021/jacs.0c11787 pmid: 18095713 |
|
(d) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
pmid: 18095713 |
|
(e) Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1.
pmid: 18095713 |
|
[2] |
https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster
|
[3] |
(a) Roesky, P. W.; Müller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708.
doi: 10.1002/anie.200301637 |
(b) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
doi: 10.1021/cr960433d |
|
(c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
doi: 10.1021/cr0306788 |
|
[4] |
(a) Zhang, Z.; Butt, N. A.; Zhang, W. Chem. Rev. 2016, 116, 14769.
doi: 10.1021/acs.chemrev.6b00564 |
(b) Barrios-Rivera, J.; Xu, Y.; Wills, M.; Vyas, V. K. Org. Chem. Front. 2020, 7, 3312.
doi: 10.1039/D0QO00794C |
|
(c) Fleury, B., N.; Castillón, S.; Claver, C. ChemCatChem 2010, 2, 1346.
doi: 10.1002/cctc.201000078 |
|
(d) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713.
doi: 10.1021/cr100218m |
|
[5] |
Reshi, N. U. D.; Saptal, V. B.; Beller, M.; Bera, J. K. ACS Catal. 2021, 11, 13809.
doi: 10.1021/acscatal.1c04208 |
[6] |
Gomez, S.; Peters, J. A.; Maschmeyer, T. Adv. Synth. Catal. 2002, 344, 1037.
|
[7] |
Wu, Z.; Du, S.; Gao, G.; Yang, W.; Yang, X.; Huang, H.; Chang, M. Chem. Sci. 2019, 10, 4509.
doi: 10.1039/C9SC00323A |
[8] |
(a) Swain, S. P.; Shri, O.; Ravichandiran, V. Mol. Catal. 2021, 508, 111576.
|
(b) Tang, S.; Li, Z.; Shao, Y.; Sun, J. Org. Lett. 2019, 21, 7228.
doi: 10.1021/acs.orglett.9b02435 |
|
[9] |
Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 10830.
doi: 10.1002/anie.201304365 |
[10] |
Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746.
doi: 10.1021/ja4092819 |
[11] |
(a) Jordan, A. J.; Lalic, G.; Sadighi, J. P. Chem. Rev. 2016, 116, 8318.
doi: 10.1021/acs.chemrev.6b00366 pmid: 18616323 |
(b) Deutsch, C.; Krause, N. Chem. Rev. 2008, 108, 2916.
doi: 10.1021/cr0684321 pmid: 18616323 |
|
[12] |
Snieckus, V.; Green, J. Synlett 2014, 25, 2258.
doi: 10.1055/s-0034-1379212 |
[13] |
(a) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1498.
doi: 10.1021/ol5003219 |
(b) Perego, L. A.; Blieck, R.; Groué, A.; Monnier, F.; Taillefer, M.; Ciofini, I.; Grimaud, L. ACS Catal. 2017, 7, 4253.
doi: 10.1021/acscatal.7b00911 |
|
[14] |
Perego, L. A.; Blieck, R.; Michel, J.; Ciofini, I.; Grimaud, L.; Taillefer, M.; Monnier, F. Adv. Synth. Catal. 2017, 359, 4388.
doi: 10.1002/adsc.201700965 |
[15] |
Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1638.
doi: 10.1002/anie.201410326 |
[16] |
Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Science 2015, 349, 62.
doi: 10.1126/science.aab3753 pmid: 26138973 |
[17] |
Xi, Y.; Butcher, T. W.; Zhang, J.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 776.
doi: 10.1002/anie.201509235 |
[18] |
Nishikawa, D.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137, 15620.
doi: 10.1021/jacs.5b09773 pmid: 26653275 |
[19] |
Takata, T.; Nishikawa, D.; Hirano, K.; Miura, M. Chem.-Eur. J. 2018, 24, 10975.
doi: 10.1002/chem.201802491 |
[20] |
Takata, T.; Hirano, K.; Miura, M. Org. Lett. 2019, 21, 4284.
doi: 10.1021/acs.orglett.9b01471 |
[21] |
Yu, L.; Somfai, P. Angew. Chem., Int. Ed. 2019, 58, 8551.
doi: 10.1002/anie.201902642 |
[22] |
Ichikawa, S.; Dai, X.-J.; Buchwald, S. L. Org. Lett. 2019, 21, 4370.
doi: 10.1021/acs.orglett.9b01592 pmid: 31099584 |
[23] |
Ichikawa, S.; Buchwald, S. L. Org. Lett. 2019, 21, 8736.
doi: 10.1021/acs.orglett.9b03356 pmid: 31625750 |
[24] |
Feng, S.; Hao, H.; Liu, P.; Buchwald, S. L. ACS Catal. 2020, 10, 282.
doi: 10.1021/acscatal.9b04871 |
[25] |
Yang, Q.; Li, S.; Wang, J. ChemCatChem 2020, 12, 3202.
doi: 10.1002/cctc.202000601 |
[26] |
Vanable, E. P.; Kennemur, J. L.; Joyce, L. A.; Ruck, R. T.; Schultz, D. M.; Hull, K. L. J. Am. Chem. Soc. 2019, 141, 739.
doi: 10.1021/jacs.8b09811 pmid: 30614700 |
[27] |
Berthold, D.; Breit, B. Org. Lett. 2018, 20, 598.
doi: 10.1021/acs.orglett.7b03708 pmid: 29350041 |
[28] |
Velasco-Rubio, Á.; Bernárdez, R.; Varela, J. A.; Saá, C. J. Org. Chem. 2021, 86, 10889.
doi: 10.1021/acs.joc.1c01268 |
[29] |
Yang, X.-H.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1774.
doi: 10.1021/jacs.6b12307 |
[30] |
Adamson, N. J.; Hull, E.; Malcolmson, S. J. J. Am. Chem. Soc. 2017, 139, 7180.
doi: 10.1021/jacs.7b03480 pmid: 28453290 |
[31] |
Park, S.; Malcolmson, S. J. ACS Catal. 2018, 8, 8468.
doi: 10.1021/acscatal.8b01914 |
[32] |
Jiu, A. Y.; Slocumb, H. S.; Yeung, C. S.; Yang, X.-H.; Dong, V. M. Angew. Chem., Int. Ed. 2021, 60, 19660.
doi: 10.1002/anie.202105679 |
[33] |
(a) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
doi: 10.1002/cjoc.201800053 pmid: 32491839 |
(b) Quan, M.; Wu, L.; Yang, G.; Zhang, W. Chem. Commun. 2018, 54, 10394.
doi: 10.1039/C8CC04932G pmid: 32491839 |
|
(c) Wu, L.; Yang, G.; Zhang, W. CCS Chem. 2020, 2, 623.
doi: 10.31635/ccschem.019.201900064 pmid: 32491839 |
|
(d) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J., Chem. Rev. 2020, 120, 6124.
doi: 10.1021/acs.chemrev.9b00682 pmid: 32491839 |
|
(e) Shi, D.; Wojcieszak, R.; Paul, S.; Marceau, E. Catalysts 2019, 9, 451.
doi: 10.3390/catal9050451 pmid: 32491839 |
|
(f) Mukherjee, A.; Milstein, D. ACS Catal. 2018, 8, 11435.
doi: 10.1021/acscatal.8b02869 pmid: 32491839 |
|
[34] |
Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 3669.
pmid: 11929257 |
[35] |
Tran, G.; Shao, W.; Mazet, C. J. Am. Chem. Soc. 2019, 141, 14814.
doi: 10.1021/jacs.9b07253 |
[36] |
Long, J.; Wang, P.; Wang, W.; Li, Y.; Yin, G. iScience 2019, 22, 369.
doi: 10.1016/j.isci.2019.11.008 |
[37] |
Abdine, R. A. A.; Hedouin, G.; Colobert, F.; Wencel-Delord, J. ACS Catal. 2021, 11, 215.
doi: 10.1021/acscatal.0c03353 |
[38] |
Lee, N. E.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 5985.
doi: 10.1021/ja00092a066 |
[39] |
Tararov, V. I.; Kadyrov, R.; Riermeier, T. H.; Holz, J.; Börner, A. Tetrahedron Lett. 2000, 41, 2351.
doi: 10.1016/S0040-4039(00)00197-0 |
[40] |
Hou, G.-H.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 11774.
doi: 10.1021/ja0644778 |
[41] |
Hou, G.-H.; Xie, J.-H.; Yan, P.-C.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 1366.
doi: 10.1021/ja808358r |
[42] |
Yan, P.-C.; Xie, J.-H.; Hou, G.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2009, 351, 3243.
doi: 10.1002/adsc.200900602 |
[43] |
Yan, P.; Xie, J.; Zhou, Q. Chin. J. Chem. 2010, 28, 1736.
doi: 10.1002/cjoc.201090293 |
[44] |
Ji, Y.; Feng, G.-S.; Chen, M.-W.; Shi, L.; Du, H.; Zhou, Y.-G. Org. Chem. Front. 2017, 4, 1125.
doi: 10.1039/C7QO00060J |
[45] |
(a) Yasukawa, T.; Masuda, R.; Kobayashi, S. Nat. Catal. 2019, 2, 1088.
doi: 10.1038/s41929-019-0371-y |
(b) Huang, H.; Wu, Z.; Gao, G.; Zhou, L.; Chang, M. Org. Chem. Front. 2017, 4, 1976.
doi: 10.1039/C7QO00400A |
|
(c) Huang, H.; Liu, X.; Zhou, L.; Chang, M.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 5309.
doi: 10.1002/anie.201601025 |
|
(d) Chang, M.; Liu, S.; Huang, K.; Zhang, X. Org. Lett. 2013, 15, 4354.
doi: 10.1021/ol401851c |
|
(e) Chi, Y.; Zhou, Y.-G.; Zhang, X. J. Org. Lett. 2003, 68, 4120.
|
|
[46] |
Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. Science 2017, 358, 326.
doi: 10.1126/science.aan6245 |
[47] |
Gilbert, S. H.; Tin, S.; Fuentes, J. A.; Fanjul, T.; Clarke, M. L. Tetrahedron 2021, 80, 131863.
|
[48] |
Chen, Y.; He, Y.-M.; Zhang, S.; Miao, T.; Fan, Q.-H. Angew. Chem., Int. Ed. 2019, 58, 3809.
doi: 10.1002/anie.201812647 |
[49] |
Wang, L.-R.; Chang, D.; Feng, Y.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Org. Lett. 2020, 22, 2251.
doi: 10.1021/acs.orglett.0c00444 |
[50] |
(a) Liu, Y.; Tao, R.; Lin, Z.-K.; Yang, G.; Zhao, Y. Nat. Commun. 2021, 12, 5035.
doi: 10.1038/s41467-021-25268-1 |
(b) Yang, G.; Pan, J.; Ke, Y.-M.; Liu, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2021, 60, 20689.
doi: 10.1002/anie.202106514 |
|
(c) Xi, X.; Li, Y.; Wang, G.; Xu, G.; Shang, L.; Zhang, Y.; Xia, L. Org. Biomol. Chem. 2019, 17, 7651.
doi: 10.1039/C9OB01417A |
|
(d) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
doi: 10.1021/acs.chemrev.7b00340 |
|
(e) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119, 2524.
doi: 10.1021/acs.chemrev.8b00306 |
|
[51] |
(a) Zhang, Y.; Lim, C.-S.; Sim, D. S. B.; Pan, H.-J.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 1399.
doi: 10.1002/anie.201307789 |
(b) Lim, C. S.; Quach, T. T.; Zhao, Y. Angew. Chem., Int. Ed. 2017, 56, 7176.
doi: 10.1002/anie.201703704 |
|
(c) Yang, P.; Zhang, C.; Ma, Y.; Zhang, C.; Li, A.; Tang, B.; Zhou, J. S. Angew. Chem., Int. Ed. 2017, 56, 14702.
doi: 10.1002/anie.201708949 |
|
(d) Xu, G.; Yang, G.; Wang, Y.; Shao, P.-L.; Y.; Xia, L.; Zhao, Y. Angew. Chem., Int. Ed. 2019, 58, 14082.
doi: 10.1002/anie.201906199 |
|
(e) Pan, H.-J.; Lin, Y.; Gao, T.; Lau, K. K.; Feng, W.; Yang, B.; Zhao, Y. Angew. Chem., Int. Ed. 2021, 60, 18599.
doi: 10.1002/anie.202101517 |
|
(f) Rong, Z.-Q.; Yu, Z.; Weng, C.; Yang, L.-C.; Lu, S.; Lan, Y.; Zhao, Y. ACS Catal. 2020, 10, 9464.
doi: 10.1021/acscatal.0c02468 |
|
[52] |
Fujita, K.-i.; Fujii, T.; Yamaguchi, R. Org. Lett. 2004, 6, 3525.
doi: 10.1021/ol048619j |
[53] |
Miao, L.; DiMaggio, S. C.; Shu, H.; Trudell, M. L. Org. Lett. 2009, 11, 1579.
doi: 10.1021/ol9002288 pmid: 19320505 |
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[3] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[4] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[5] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[6] | 周章涛, 王杨, 程冰心, 叶伟平. [RuCl(p-cymene)-(S)-BINAP]Cl催化不对称合成反式-3-氨基-双环[2.2.2]辛烷-2-甲酸乙酯[J]. 有机化学, 2023, 43(8): 2961-2967. |
[7] | 王莎, 陈常鹏, 曾小明. 联吡啶配体促进铬催化炔烃的顺式硼氢化反应[J]. 有机化学, 2023, 43(7): 2447-2453. |
[8] | 宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建. 利用硅氢加成反应催化转化二氧化碳研究进展[J]. 有机化学, 2023, 43(6): 2068-2080. |
[9] | 褚杨杨, 韩召斌, 丁奎岭. 动力学拆分在过渡金属催化的不对称(转移)氢化中的应用研究[J]. 有机化学, 2023, 43(6): 1934-1951. |
[10] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[11] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[12] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[13] | 刘双, 邹亮华, 王晓明. 均相钴催化氨硼烷的脱氢及转移氢化反应的研究进展[J]. 有机化学, 2023, 43(5): 1713-1725. |
[14] | 刘育园, 雷雅钦, 杨文, 赵万祥. 钴催化烯胺远程硼氢化[J]. 有机化学, 2023, 43(5): 1761-1771. |
[15] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||