有机化学 ›› 2023, Vol. 43 ›› Issue (1): 74-93.DOI: 10.6023/cjoc202207022 上一篇 下一篇
综述与进展
王川川†,a, 马志伟†,a, 侯学会a, 杨龙华b,*(), 陈亚静b,*()
收稿日期:
2022-07-13
修回日期:
2022-08-08
发布日期:
2022-09-15
通讯作者:
杨龙华, 陈亚静
作者简介:
基金资助:
Chuanchuan Wang†,a, Zhiwei Ma†,a, Xuehui Houa, Longhua Yangb(), Yajing Chenb()
Received:
2022-07-13
Revised:
2022-08-08
Published:
2022-09-15
Contact:
Longhua Yang, Yajing Chen
About author:
Supported by:
文章分享
N-Ts氰胺是有机合成中非常高效和实用的一种多功能合成前体, 其在构建含氮骨架领域中获得了较多应用. 根据反应类型划分, 总结了近年来N-Ts氰胺在有机合成中的研究进展, 主要包括其在氰基化反应、经氰胺负离子参与的环化反应、氰胺化反应、磺酰化反应及经氰基官能团参与的环化反应等方面的应用, 并对该领域的研究前景进行了展望.
王川川, 马志伟, 侯学会, 杨龙华, 陈亚静. N-Ts氰胺在有机合成中的研究与应用[J]. 有机化学, 2023, 43(1): 74-93.
Chuanchuan Wang, Zhiwei Ma, Xuehui Hou, Longhua Yang, Yajing Chen. Research and Application of N-Ts Cyanamides in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 74-93.
[1] |
Frederick, K. J. J. Chem. Soc. 1949, 1034.
|
[2] |
Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 519.
doi: 10.1002/anie.201006044 |
[3] |
Cui, J.; Song, J.; Liu, Q.; Liu, H.; Dong, Y. Chem. Asian J. 2018, 13, 482.
doi: 10.1002/asia.201701611 |
[4] |
Wang, R.; Falck, J. R. Chem. Commun. 2013, 49, 6516.
doi: 10.1039/c3cc43597k |
[5] |
Gong, T.-J.; Xiao, B.; Cheng, W.-M.; Su, W.; Xu, J.; Liu, Z.-J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630.
doi: 10.1021/ja405742y |
[6] |
Chaitanya, M.; Yadagiri, D.; Anbarasan, P. Org. Lett. 2013, 15, 4960.
doi: 10.1021/ol402201c pmid: 24041400 |
[7] |
Gu, L.-J.; Jin, C.; Wang, R.; Ding, H.-Y. ChemCatChem 2014, 6, 1225.
|
[8] |
Han, J.; Pan, C.; Jia, X.; Zhu, C. Org. Biomol. Chem. 2014, 12, 8603.
doi: 10.1039/C4OB01736F |
[9] |
Dong, J.; Wu, Z.; Liu, Z.; Liu, P.; Sun, P. J. Org. Chem. 2015, 80, 12588.
doi: 10.1021/acs.joc.5b01666 |
[10] |
Zhu, X.; Shen, X.-J.; Tian, Z.-Y.; Lu, S.; Tian, L.-L.; Liu, W.-B.; Song, B.; Hao, X.-Q. J. Org. Chem. 2017, 82, 6022.
doi: 10.1021/acs.joc.6b03036 |
[11] |
Zhang, H.; Jing, Li, Zheng, Y.; Sang, R.; Zhao, Y.; Wang, Q.; Wu, Y. Eur. J. Org. Chem. 2018, 723.
|
[12] |
Li, J.; Shi, L.; Zhang, S.-P.; Wang, X.-Y.; Zhu, X.; Hao, X.-Q.; Song, M.-P. J. Org. Chem. 2020, 85, 10835.
doi: 10.1021/acs.joc.0c01386 |
[13] |
Lv, S.; Li, Y.; Yao, T.; Yu, X.; Zhang, C.; Hai, L.; Wu, Y. Org. Lett. 2018, 20, 4994.
doi: 10.1021/acs.orglett.8b01952 |
[14] |
Jia, J.; Liu, X.; Shi, J.; Xu, H. E.; Yi, W. Asian J. Org. Chem. 2015, 4, 1250.
doi: 10.1002/ajoc.201500294 |
[15] |
Chaitanya, M.; Anbarasan, P. J. Org. Chem. 2015, 80, 3695.
doi: 10.1021/acs.joc.5b00142 pmid: 25763805 |
[16] |
Deng, C.; Sun, Y.; Ren, Y.; Zhang, W. Dalton Trans. 2019, 48, 168.
doi: 10.1039/C8DT04079F |
[17] |
Mishra, N. K.; Jeong, T.; Sharma, S.; Shin, Y.; Han, S.; Park, J.; Oh, J. S.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Adv. Synth. Catal. 2015, 357, 1293.
doi: 10.1002/adsc.201401152 |
[18] |
Chaitanya, M.; Anbarasan, P. Org. Lett. 2015, 17, 3766-3769.
doi: 10.1021/acs.orglett.5b01746 pmid: 26196156 |
[19] |
Su, W.; Gong, T.-J.; Xiao, B.; Fu, Y. Chem. Commun. 2015, 51, 11848.
doi: 10.1039/C4CC09790D |
[20] |
Lu, X.; Huang, Y. Org. Chem. Front. 2021, 8, 3008.
doi: 10.1039/D1QO00232E |
[21] |
Li, J.; Xu, W.; Ding, J.; Lee, K.-H. Tetrahedron Lett. 2016, 57, 1205.
|
[22] |
Song, F.; Salter, R.; Chen, L. J. Org. Chem. 2017, 82, 3530.
doi: 10.1021/acs.joc.7b00033 |
[23] |
Heydari, S.; Habibi, D.; Faraji, A. R.; Keypour, H.; Mahmoudabadi, M. Inorg. Chim. Acta 2021, 514, 119956.
doi: 10.1016/j.ica.2020.119956 |
[24] |
Yang, Y.; Buchwald, S. L. Angew. Chem. Int. Ed. 2014, 53, 8677.
doi: 10.1002/anie.201402449 pmid: 24801708 |
[25] |
Yang, Y.; Liu, P. ACS Catal. 2015, 5, 2944.
doi: 10.1021/acscatal.5b00443 |
[26] |
Yang, Y. Angew. Chem. Int. Ed. 2016, 55, 345.
doi: 10.1002/anie.201508294 pmid: 26509757 |
[27] |
Zhao, W.; Montgomery, J. Angew. Chem. Int. Ed. 2015, 54, 12683.
doi: 10.1002/anie.201507303 |
[28] |
Zhao, W.; Montgomery, J. J. Am. Chem. Soc. 2016, 138, 9763.
doi: 10.1021/jacs.6b05216 |
[29] |
Jia, T.; He, Q.; Ruscoe, R. E.; Pulis, A. P.; Procter, D. J. Angew. Chem. Int. Ed. 2018, 57, 11305.
doi: 10.1002/anie.201806169 |
[30] |
Wen, L.; Zhang, H.; Wang, J.; Meng, F. Chem. Commun. 2018, 54, 12832.
doi: 10.1039/C8CC07032F |
[31] |
Jia, T.; Smith, M. J.; Pulis, A. P.; Perry, G. J. P.; Procter, D. J. ACS Catal. 2019, 9, 6744.
doi: 10.1021/acscatal.9b01911 |
[32] |
Li, Z.; Zhang, L.; Nishiura, M.; Luo, G.; Luo, Y.; Hou, Z. ACS Catal. 2020, 10, 11685.
doi: 10.1021/acscatal.0c03018 |
[33] |
Li, J.; Ackermann, L. Angew. Chem. Int. Ed. 2015, 54, 3635.
doi: 10.1002/anie.201409247 |
[34] |
Yu, D.-G.; Gensch, T.; Azambuja, F.; Vásquez-Céspedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722.
doi: 10.1021/ja511011m |
[35] |
Cai, Y.; Qian, X.; Rérat, A.; Auffrant, A.; Gosmini, C. Adv. Synth. Catal. 2015, 357, 3419.
doi: 10.1002/adsc.201500245 |
[36] |
Liu, W.; Ackermann, L. Chem. Commun. 2014, 50, 1878.
doi: 10.1039/c3cc49502g |
[37] |
Mishra, A.; Vats, T. K.; Deb, I. J. Org. Chem. 2016, 81, 6525.
doi: 10.1021/acs.joc.6b01148 |
[38] |
Li, H.; Chen, J.; Dong, J.; Kong, W. Org. Lett. 2021, 23, 6466.
doi: 10.1021/acs.orglett.1c02270 |
[39] |
Liu, W.; Richter, S. C.; Mei, R.; Feldt, M.; Ackermann, L. Chem. Eur. J. 2016, 22, 17958.
doi: 10.1002/chem.201604621 |
[40] |
Yu, X.; Tang, J.; Jin, X.; Yamamoto, Y.; Bao, M. Asian J. Org. Chem. 2018, 7, 550.
doi: 10.1002/ajoc.201700628 |
[41] |
Anbarasan, P.; Neumann, H.; Beller, M. Chem. Eur. J. 2011, 17, 4217.
doi: 10.1002/chem.201003388 |
[42] |
Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13, 5608.
doi: 10.1021/ol202335p pmid: 21916460 |
[43] |
Kiyokawa, K. Nagata, T.; Minakata, S. Angew. Chem. Int. Ed. 2016, 55, 10458.
doi: 10.1002/anie.201605445 pmid: 27417187 |
[44] |
Benn, K.; Nicholson, K.; Langer, T.; Thomas, S. P. Chem. Commun. 2021, 57, 9406.
doi: 10.1039/D1CC03649A |
[45] |
Kiyokawa, K.; Hata, S.; Kainuma, S.; Minakata, S. Chem. Commun. 2019, 55, 458.
doi: 10.1039/C8CC09229J |
[46] |
Zhang, W.; Li, T.; Wang, Q.; Zhao, W. Adv. Synth. Catal. 2019, 361, 4914.
doi: 10.1002/adsc.201900813 |
[47] |
Ren, X.; Shen, C.; Wang, G.; Shi, Z.; Tian, X.; Dong, K. Org. Lett. 2021, 23, 2527.
doi: 10.1021/acs.orglett.1c00465 |
[48] |
Bhat. S. V.; Robinson, D.; Moses, J. E.; Sharma, P. Org. Lett. 2016, 18, 1100.
doi: 10.1021/acs.orglett.6b00203 |
[49] |
Sharma, P.; Bhat, S. V.; Prabhath, M. R. R.; Molino, A.; Nauha, E.; Wilson, D. J. D.; Moses, J. E. Org. Lett. 2018, 20, 4263.
doi: 10.1021/acs.orglett.8b01673 |
[50] |
Wang, C.-C.; Qu, Y.-L.; Liu, X.-H.; Ma, Z.-W.; Yang, B.; Liu, Z.-J.; Chen, X.-P.; Chen, Y.-J. J. Org. Chem. 2021, 86, 3546.
doi: 10.1021/acs.joc.0c02932 |
[51] |
Wang, C.-C.; Wang, X.-L.; Zhang, Q.-L.; Liu, J.; Ma, Z.-W.; Liu, Z.-J.; Chen, Y.-J. Org. Chem. Front. 2022, 9, 1574.
doi: 10.1039/D1QO01926K |
[52] |
Ayres, J. N.; Ashford, M. W.; Stöckl, Y.; Prudhomme, V.; Ling, K. B.; Platts, J. A.; Morrill, L. C. Org. Lett. 2017, 19, 3835.
doi: 10.1021/acs.orglett.7b01710 |
[53] |
Ayres, J. N.; Williams, M. T. J.; Tizzard, G. J.; Coles, S. J.; Ling, K. B.; Morrill, L. C. Org. Lett. 2018, 20, 5282.
doi: 10.1021/acs.orglett.8b02225 |
[54] |
Li, J.-S.; Yang, P.-P.; Chen, G.-Q.; Xie, X.-Y.; Li, Z.-W.; Li, W.-S.; Liu, W.-D. Asian J. Org. Chem. 2019, 8, 246.
|
[55] |
Kasthuri, M.; Babu, H. S.; Kumar, K. S.; Sudhakar, C.; Kumar, P. V. N. Synlett 2015, 26, 897.
doi: 10.1055/s-0034-1380166 |
[56] |
Šlachtová, V.; Chasák, J.; Brulíková, L. ACS Omega 2019, 4, 19314.
doi: 10.1021/acsomega.9b02702 pmid: 31763555 |
[57] |
Murthy, V. N.; Nikumbh, S. P.; Kumar, S. P.; Rao, L. V.; Raghunadh, A. Tetrahedron Lett. 2015, 56, 5767.
doi: 10.1016/j.tetlet.2015.08.040 |
[1] | 蔡远林, 吕亚, 聂桂花, 金智超, 池永贵. 氮杂环卡宾催化合成氰基化合物的研究进展[J]. 有机化学, 2023, 43(9): 3135-3145. |
[2] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[3] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[4] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[5] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[6] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[7] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[8] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[9] | 吴宇恒, 颜岩, 寮渭巍. 双功能二氧化硫替代物在合成磺酰类化合物中的研究进展[J]. 有机化学, 2023, 43(11): 3713-3727. |
[10] | 南宁, 吴双, 秦景灏, 李金恒. 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023, 43(10): 3414-3453. |
[11] | 魏琬絜, 詹磊, 高雷, 黄国保, 马献力. 电化学合成C-磺酰基化合物的研究进展[J]. 有机化学, 2023, 43(1): 17-35. |
[12] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[13] | 桑田, 贾帆, 何静, 李春天, 刘岩, 刘平. I2催化β-酮腈与1H-吡唑-5-胺的环化反应[J]. 有机化学, 2023, 43(1): 195-201. |
[14] | 刘东汉, 鲁席杭, 柴张梦洁, 杨浩琦, 孙瑜琳, 余富朝. 构建2H-吡咯-2-酮骨架的研究进展[J]. 有机化学, 2023, 43(1): 57-73. |
[15] | 危斌, 周子龙, 秦景灏, 严泽宇, 郭嘉程, 雷澍, 谢叶香, 欧阳旋慧, 宋仁杰. 氧杂蒽与亚磺酸钠的电化学氧化C(sp3)—H磺酰化反应[J]. 有机化学, 2023, 43(1): 186-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||