有机化学 ›› 2022, Vol. 42 ›› Issue (12): 4067-4077.DOI: 10.6023/cjoc202208017 上一篇 下一篇
综述与进展
收稿日期:
2022-08-15
修回日期:
2022-09-26
发布日期:
2022-10-24
通讯作者:
杨文超
基金资助:
Yuxi Zhua, Ting Xiaoc, Dong Xiab, Wenchao Yanga()
Received:
2022-08-15
Revised:
2022-09-26
Published:
2022-10-24
Contact:
Wenchao Yang
Supported by:
文章分享
氟烷基羧酸衍生物的脱羧反应是获得氟烷基自由基的有效途径, 而该自由基物种参与烯烃、异腈以及芳(杂)环的串联、加成反应是获取各种含氟官能化有机分子的重要方法. 通过氟烷基羧酸产生的氟烷基自由基引发的串联反应可以构建啡啶、二氢黄酮、喹啉-2,4-二酮及吲哚酮等环状骨架. 综述了近年来氟烷基羧酸脱羧引发的自由基反应的研究进展, 涵盖反应设计、反应机理及研究展望等内容.
朱玉溪, 肖婷, 夏冬, 杨文超. 氟烷基羧酸的脱羧氟烷基化反应研究进展[J]. 有机化学, 2022, 42(12): 4067-4077.
Yuxi Zhu, Ting Xiao, Dong Xia, Wenchao Yang. Recent Advances in the Decarboxylative Fluoroalkylation of Fluoroalkyl Carboxylic Acids[J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4067-4077.
[31] |
(a) Yang, B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 5956.
pmid: 27805816 |
(b) Guo, C.; Han, X.; Feng, Y.; Liu, Z.; Li, Y.; Liu, H.; Zhang, L.; Dong, Y.; Li, X. J. Org. Chem. 2022, 87, 9232.
doi: 10.1021/acs.joc.2c00965 pmid: 27805816 |
|
[1] |
(a) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
doi: 10.1021/ar4003202 |
(b) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441.
doi: 10.1039/C6CS00351F |
|
(c) Zhang, X.; Tang, P. Sci. China: Chem. 2019, 62, 525.
|
|
(d) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
doi: 10.1021/acs.accounts.8b00230 |
|
(e) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.
doi: 10.1039/c2cs15352a |
|
[2] |
(a) Dong, D.-Q.; Yang, H.; Shi, J.-L.; Si, W.-J.; Wang, Z.-L.; Xu, X.-M. Org. Chem. Front. 2020, 7, 2538.
doi: 10.1039/D0QO00567C |
(b) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
doi: 10.1021/acs.accounts.5b00047 |
|
(c) Wang, Z.; Sun, Y.; Shen, L.-Y.; Yang, W.; Meng, F.; Li, P. Org. Chem. Front. 2022, 9, 853.
doi: 10.1039/D1QO01512E |
|
(d) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785. (in Chinese)
|
|
( 王江, 柳红, 有机化学, 2011, 31, 1785.)
|
|
(e) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34, 662. (in Chinese)
|
|
( 张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.)
doi: 10.6023/cjoc201310039 |
|
[3] |
(a) Aguilar Troyano, F. J.; Merkens, K.; Anwar, K.; Gomez-Suarez, A. Angew. Chem., Int. Ed. 2021, 60, 1098.
doi: 10.1002/anie.202010157 pmid: 34306801 |
(b) Shi, Y.; Xiao, H.; Xu, X.-H.; Huang, Y. Org. Biomol. Chem. 2018, 16, 8472.
doi: 10.1039/C8OB02457J pmid: 34306801 |
|
(c) Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Nature 2019, 573, 398.
doi: 10.1038/s41586-019-1539-y pmid: 34306801 |
|
(d) Brigham, C. E.; Malapit, C. A.; Lalloo, N.; Sanford, M. S. ACS Catal. 2020, 10, 8315.
doi: 10.1021/acscatal.0c02950 pmid: 34306801 |
|
(e) Mei, W.; Kong, Y.; Yan, G. Org. Chem. Front. 2021, 8, 5516.
doi: 10.1039/D1QO00775K pmid: 34306801 |
|
[4] |
(a) Yang, W.-C.; Feng, J.-G.; Wu, L.; Zhang, Y.-Q. Adv. Synth. Catal. 2019, 361, 1700.
doi: 10.1002/adsc.201801355 |
(b) Si, Y.-F.; Lv, Q.-Y.; Yu, B. Adv. Synth. Catal. 2021, 363, 4640.
doi: 10.1002/adsc.202100807 |
|
(c) Lv, Y.; Cui, H.; Meng, N.; Yue, H.; Wei, W. Chin. Chem. Lett. 2022, 33, 97.
doi: 10.1016/j.cclet.2021.06.068 |
|
(d) Yang, W.-C.; Zhang, M.-M.; Feng, J.-G. Adv. Synth. Catal. 2020, 362, 4446.
doi: 10.1002/adsc.202000636 |
|
(e) Shang, T.; Lu, L.; Cao, Z.; Liu, Y.; He, W.; Yu, B. Chem. Commun. 2019, 55, 5408.
doi: 10.1039/C9CC01047E |
|
[5] |
Wan, W.; Ma, G.; Li, J.; Chen, Y.; Hu, Q.; Li, M.; Jiang, H.; Deng, H.; Hao, J. Chem. Commun. 2016, 52, 1598.
doi: 10.1039/C5CC09179A |
[6] |
(a) Wan, W.; Li, J.; Ma, G.; Chen, Y.; Jiang, H.; Deng, H.; Hao, J. Org. Biomol. Chem. 2017, 15, 5308.
doi: 10.1039/C7OB00955K |
(b) Li, Y.-L.; Wang, J.-B.; Wang, X.-L.; Cao, Y.; Deng, J. Eur. J. Org. Chem. 2017, 2017, 6052.
doi: 10.1002/ejoc.201701248 |
|
[7] |
Huang, C.-M.; Li, J.; Wang, S.-H.; Ai, J.-J.; Liu, X.-Y.; Rao, W.-D.; Wang, S.-Y. J. Org. Chem. 2021, 86, 8437.
doi: 10.1021/acs.joc.1c00965 |
[8] |
Zhao, F.; Guo, S.; Zhang, Y.; Sun, T.; Yang, B.; Ye, Y.; Sun, K. Org. Chem. Front. 2021, 8, 6895.
doi: 10.1039/D1QO01425K |
[9] |
Zhou, Y.; Xiong, Z.; Qiu, J.; Kong, L.; Zhu, G. Org. Chem. Front. 2019, 6, 1022.
doi: 10.1039/C9QO00136K |
[10] |
Cui, Q.; Teng, F.; Yang, H.; Xun, C.; Huang, W.; Lu, Z.; Zhu, M.; Ouyang, W.; He, W.-M. Chem.-Asian J. 2022, 17, e202101139.
|
[11] |
Barata-Vallejo, S.; Postigo, A. Chem.-Eur. J. 2020, 26, 11065.
doi: 10.1002/chem.202000856 |
[12] |
Shi, G.; Shao, C.; Pan, S.; Yu, J.; Zhang, Y. Org. Lett. 2015, 17, 38.
doi: 10.1021/ol503189j |
[13] |
Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.
doi: 10.1002/anie.201900977 |
[14] |
Truong, T. T.; Christensen, S. B.; Nielsen, J. Chem.-Eur. J. 2017, 23, 18125.
doi: 10.1002/chem.201704261 pmid: 28945302 |
[15] |
Guo, C.; Liu, Z.; Li, X.; Han, X.; Li, Y.; Liu, H.; Zhang, L.; Li, X.; Dong, Y. Chem. Commun. 2022, 58, 1147.
doi: 10.1039/D1CC06466E |
[16] |
Guo, C.; Han, X.; Li, X.; Diao, Z.; Li, X.; Dong, Y. Asian J. Org. Chem. 2022, 11, e202100663.
|
[17] |
Galal, S. A.; Khairat, S. H. M.; Ragab, F. A. F.; Abdelsamie, A. S.; Ali, M. M.; Soliman, S. M.; Mortier, J.; Wolber, G.; El Diwani, H. I. Eur. J. Med. Chem. 2014, 86, 122.
doi: 10.1016/j.ejmech.2014.08.048 |
[18] |
Sun, K.; Xiao, F.; Yu, B.; He, W.-M. Chin. J. Catal. 2021, 42, 1921.
doi: 10.1016/S1872-2067(21)63850-0 |
[19] |
Hong, G.; Yuan, J.; Fu, J.; Pan, G.; Wang, Z.; Yang, L.; Xiao, Y.; Mao, P.; Zhang, X. Org. Chem. Front. 2019, 6, 1173.
doi: 10.1039/C9QO00105K |
[20] |
Gao, Y.; Zhao, L.; Xiang, T.; Li, P.; Wang, L. RSC Adv. 2020, 10, 10559.
doi: 10.1039/D0RA02059A |
[21] |
Xie, X.; Zhang, Y.; Hao, J.; Wan, W. Org. Biomol. Chem. 2020, 18, 400.
doi: 10.1039/C9OB02586C |
[22] |
Gao, Y.; Li, L.; Liu, J.; Wang, L.; Wang, M. Synthesis 2021, 53, 1636.
doi: 10.1055/a-1343-5642 |
[23] |
(a) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K.-H. Med. Res. Rev. 2003, 23, 322.
doi: 10.1002/med.10034 |
(b) Bras, G. L.; Radanyi, C.; Peyrat, J.-F.; Brion, J.-D.; Alami, M.; Marsaud, V.; Stella, B.; Renoir, J.-M. J. Med. Chem. 2007, 50, 6189.
doi: 10.1021/jm0707774 |
|
(c) Hassan, M. Z.; Osman, H.; Ali, M. A.; Ahsan, M. J. Eur. J. Med. Chem. 2016, 123, 236.
doi: 10.1016/j.ejmech.2016.07.056 |
|
(d) Anamika, D.; Utreja, D.; Ekta; Jain, N.; Sharma, S. Curr. Org. Chem. 2019, 22, 2509.
doi: 10.2174/1385272822666181029102140 |
|
(e) Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.
doi: 10.1039/C5CC00878F |
|
[24] |
(a) Chen, Z.; Bai, X.; Sun, J.; Xu, Y. J. Org. Chem. 2020, 85, 7674.
doi: 10.1021/acs.joc.0c00113 |
(b) Chen, Z.; Sun, J.; Ke, Z.; Huang, X.; Li, Z. Org. Chem. Front. 2022, 9, 757.
doi: 10.1039/D1QO01609A |
|
[25] |
Zhao, H.-X.; Ma, G.-B.; Xie, X.-Y.; Wang, Y.; Hao, J.; Wan, W. Chem. Commun. 2019, 55, 3927.
doi: 10.1039/C9CC00984A |
[26] |
(a) Mizuta, S.; Stenhagen, I. S. R.; O’Duill, M.; Wolstenhulme, J.; Kirjavainen, A. K.; Forsback, S. J.; Tredwell, M.; Sandford, G.; Moore, P. R.; Huiban, M.; Luthra, S. K.; Passchier, J.; Solin, O.; Gouverneur, V. Org. Lett. 2013, 15, 2648.
doi: 10.1021/ol4009377 pmid: 27440264 |
(b) Zhou, M.; Ni, C.; He, Z.; Hu, J. Org. Lett. 2016, 18, 3754.
doi: 10.1021/acs.orglett.6b01779 pmid: 27440264 |
|
(c) Zhang, Q.-W.; Brusoe, A. T.; Mascitti, V.; Hesp, K. D.; Blakemore, D. C.; Kohrt, J. T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 9758.
doi: 10.1002/anie.201604793 pmid: 27440264 |
|
[27] |
(a) Chen, F.; Hashmi, A. S. K. Org. Lett. 2016, 18, 2880.
doi: 10.1021/acs.orglett.6b01188 pmid: 27267868 |
(b) Li, X.; Li, S.; Sun, S.; Yang, F.; Zhu, W.; Zhu, Y.; Wu, Y.; Wu, Y. Adv. Synth. Catal. 2016, 358, 1699.
doi: 10.1002/adsc.201501028 pmid: 27267868 |
|
[28] |
(a) Wang, Y.; Zhao, H.; Xie, X.; Jiang, H.; Deng, H.; Hao, J.; Wan, W. Synth. Commun. 2019, 49, 2961.
|
(b) Zhang, Y.; Wang, Q.; Peng, Y.; Gong, H.; Chen, H.; Deng, H.; Hao, J.; Wan, W. Org. Biomol. Chem. 2021, 19, 7024.
doi: 10.1039/D1OB01165K |
|
[29] |
Debien, L.; Quiclet-Sire, B.; Zard, S. Z. Acc. Chem. Res. 2015, 48, 1237.
doi: 10.1021/acs.accounts.5b00019 |
[30] |
Li, X.; Zhang, R. H.; Zhang, X. F.; Zhu, P. Y.; Yao, T. L. Chem.-Asian J. 2020, 15, 1175.
doi: 10.1002/asia.202000059 |
[1] | 陶苏艳, 项紫欣, 白俊杰, 万潇, 万小兵. 亚硝酸叔丁酯参与的酰胺水解反应[J]. 有机化学, 2024, 44(2): 550-560. |
[2] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[3] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[4] | 张维舒, 聂礼飞, Khurshed Bozorov, 阿吉艾克拜尔•艾萨, 赵江瑜. 2,5-二氨基噻吩-3,4-二羧酸二乙酯衍生物的合成及抗肿瘤活性研究[J]. 有机化学, 2023, 43(7): 2543-2552. |
[5] | 田维娜, 徐亮, 韦玉, 李鹏飞. 异喹啉-3-羧酸根螯合的B,B-二芳基四配位硼络合物的合成[J]. 有机化学, 2023, 43(5): 1792-1798. |
[6] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[7] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[8] | 郭广青, 练仲. 硅基羧酸在有机合成中的应用进展[J]. 有机化学, 2023, 43(10): 3580-3589. |
[9] | 涂志, 余金生, 周剑. 溴二氟甲基三甲基硅烷的合成及其在有机合成中的应用[J]. 有机化学, 2023, 43(10): 3491-3507. |
[10] | 孙奇, 孙泽颖, 俞泽, 王光伟. 镍催化炔烃的立体选择性芳基-二氟烷基化反应[J]. 有机化学, 2022, 42(8): 2515-2520. |
[11] | 易文静, 孙威, 胡信全, 刘超, 靳立群. 羧酸酯合成酮类化合物的研究进展[J]. 有机化学, 2022, 42(6): 1626-1639. |
[12] | 李心灵, 孟卫东, 徐修华, 黄焰根. 可见光诱导活化烯烃的芳基氟烷基化反应[J]. 有机化学, 2022, 42(6): 1820-1830. |
[13] | 王朝彧, 董书达, 朱天阳, 刘玉琴, 武梓涵, 冯若昆. 钴催化的1-萘胺衍生物与α-羰基羧酸的脱羰C(8)-位酰氧基化反应[J]. 有机化学, 2022, 42(6): 1799-1810. |
[14] | 楚治良, 陈晖娟, 单帅, 王晓娜, 高春芳, 渠桂荣, 刘忠于, 郭海明. 一步法合成1,2,4-三氮唑[3,4-i]嘌呤类化合物[J]. 有机化学, 2022, 42(5): 1551-1556. |
[15] | 郭檬檬, 于子伦, 陈玉兰, 葛丹华, 马猛涛, 沈志良, 褚雪强. 二氟烯醇硅醚作为含氟砌块在构建有机氟化物中的研究进展[J]. 有机化学, 2022, 42(11): 3562-3587. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||