有机化学 ›› 2023, Vol. 43 ›› Issue (4): 1462-1471.DOI: 10.6023/cjoc202208042 上一篇 下一篇
研究论文
张苗苗, 陈荣, 焦红梅, 马豪杰, 韩波*(), 张玉琦, 王记江
收稿日期:
2022-08-30
修回日期:
2022-10-18
发布日期:
2022-12-07
通讯作者:
韩波
作者简介:
基金资助:
Miaomiao Zhang, Rong Chen, Hongmei Jiao, Haojie Ma, Bo Han(), Yuqi Zhang, Jijiang Wang
Received:
2022-08-30
Revised:
2022-10-18
Published:
2022-12-07
Contact:
Bo Han
About author:
Supported by:
文章分享
发展了一种操作简便、廉价实用的镁催化体系, 用于醛、酮及α,β-不饱和醛/酮的选择性还原, 制备了一系列醇类化合物. 以温和的HBpin为还原剂, 在没有酸或碱作为水解试剂的前提下, 高选择性地还原羰基, 体系中没有检测到硼酸酯副产物. 对碘、溴、氯、氟、硝基、三氟甲基、氨甲基、炔基和酰胺等官能团具有良好的兼容性, 在温和的条件下, MgCl2/HBpin催化体系不仅对羰基具有较高的催化活性, 对亚胺类底物具有高效的催化效果.
张苗苗, 陈荣, 焦红梅, 马豪杰, 韩波, 张玉琦, 王记江. 氯化镁催化醛、酮及亚胺的化学选择性还原[J]. 有机化学, 2023, 43(4): 1462-1471.
Miaomiao Zhang, Rong Chen, Hongmei Jiao, Haojie Ma, Bo Han, Yuqi Zhang, Jijiang Wang. MgCl2-Catalyzed Chemoselective Reduction of Aldehydes, Ketones and Imines[J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1462-1471.
Entry | Catalyst (mol%) | Solvent | Temp./℃ | Time/h | Yield/% |
---|---|---|---|---|---|
1 | Mg (100) | THF | 45 | 24 | 92 |
2 | MgSO4 (100) | THF | 45 | 24 | 52 |
3 | MgCl2 (50) | THF | 45 | 24 | 93 |
4b | MgCl2 (50) | THF | 45 | 24 | Ndc |
5 | MgCl2 (10) | THF | 45 | 24 | 93 |
6 | MgCl2 (5) | THF | 45 | 24 | 95 |
7 | MgCl2 (1) | THF | 45 | 24 | 93 |
8 | MgCl2 (1) | THF | r.t. | 1 | 87 |
9 | MgCl2 (1) | Toluene | r.t. | 1 | 87 |
10 | MgCl2 (1) | Dioxane | r.t. | 1 | 53 |
11 | MgCl2 (1) | EtOH | r.t. | 1 | 92 (90)d |
12 | MgCl2 (1) | CH3CN | r.t. | 1 | 69 |
13 | MgCl2 (1) | CH2Cl2 | r.t. | 1 | Nd |
14 | MgCl2 (1) | EtOAc | r.t. | 1 | 78 |
15 | MgCl2 (1) | EtOH | r.t. | 1 | 76e |
16 | No | EtOH | r.t. | 1 | 0 |
Entry | Catalyst (mol%) | Solvent | Temp./℃ | Time/h | Yield/% |
---|---|---|---|---|---|
1 | Mg (100) | THF | 45 | 24 | 92 |
2 | MgSO4 (100) | THF | 45 | 24 | 52 |
3 | MgCl2 (50) | THF | 45 | 24 | 93 |
4b | MgCl2 (50) | THF | 45 | 24 | Ndc |
5 | MgCl2 (10) | THF | 45 | 24 | 93 |
6 | MgCl2 (5) | THF | 45 | 24 | 95 |
7 | MgCl2 (1) | THF | 45 | 24 | 93 |
8 | MgCl2 (1) | THF | r.t. | 1 | 87 |
9 | MgCl2 (1) | Toluene | r.t. | 1 | 87 |
10 | MgCl2 (1) | Dioxane | r.t. | 1 | 53 |
11 | MgCl2 (1) | EtOH | r.t. | 1 | 92 (90)d |
12 | MgCl2 (1) | CH3CN | r.t. | 1 | 69 |
13 | MgCl2 (1) | CH2Cl2 | r.t. | 1 | Nd |
14 | MgCl2 (1) | EtOAc | r.t. | 1 | 78 |
15 | MgCl2 (1) | EtOH | r.t. | 1 | 76e |
16 | No | EtOH | r.t. | 1 | 0 |
[1] |
(a) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713.
doi: 10.1021/cr100218m pmid: 31074625 |
(b) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.
doi: 10.1021/cr200328h pmid: 31074625 |
|
(c) Han, B.; Ma, P.; Cong, X.; Chen, H.; Zeng, X. J. Am. Chem. Soc. 2019, 141, 9018.
doi: 10.1021/jacs.9b03328 pmid: 31074625 |
|
[2] |
(a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
doi: 10.1021/ar9502341 |
(b) Alonso, F.; Riente, P.; Yus, M. Acc. Chem. Res. 2011, 44, 379.
doi: 10.1021/ar1001582 |
|
[3] |
(a) Chang, J.; Fang, F.; Zhang, J.; Chen, X. Adv. Synth. Catal. 2020, 362, 2709.
|
(b) Kim, J. Y.; Kim, H. D.; Seo, M. J.; Kim, H. R.; No, Z.; Ha, D.-C.; Lee, G. H. Tetrahedron Lett. 2006, 47, 9.
doi: 10.1016/j.tetlet.2005.10.140 |
|
[4] |
Ed.: Abdel-Magid, A. F. ACS Symposium Series, American Chemical Society, Washington, DC, 1998.
|
[5] |
(a) Das, D.; Roy, S.; Das, P. K. Org. Lett. 2004, 6, 4133.
doi: 10.1021/ol0481176 |
(b) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
doi: 10.1021/ja00475a040 |
|
(c) Forkel, N. V.; Henderson, D. A.; Fuchter, M. J. Green Chem. 2012, 14, 2129.
doi: 10.1039/c2gc35619h |
|
[6] |
(a) Wang, M.-M.; He, L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Green Chem. 2011, 13, 602.
doi: 10.1039/c0gc00937g pmid: 25741992 |
(b) Merel, D. S.; Elie, M.; Lohier, J.-F.; Gaillard, S.; Renaud, J.-L. ChemCatChem 2013, 5, 2939.
doi: 10.1002/cctc.v5.10 pmid: 25741992 |
|
(c) Spasyuk, D.; Vicent, C.; Gusev, D. G. J. Am. Chem. Soc. 2015, 137, 3743.
doi: 10.1021/ja512389y pmid: 25741992 |
|
(d) Dub, P. A.; Scott, B. L.; Gordon, J. C. J. Am. Chem. Soc. 2017, 139, 1245.
doi: 10.1021/jacs.6b11666 pmid: 25741992 |
|
[7] |
(a) Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238.
doi: 10.1021/acscatal.5b00428 |
(b) Shegavi, M. L.; Bose, S. K. Catal. Sci. Technol. 2019, 9, 3307.
doi: 10.1039/C9CY00807A |
|
[8] |
(a) Yang, Z.-Y.; Luo, H.; Zhang, M.; Wang, X.-C. ACS Catal. 2021, 11, 10824.
doi: 10.1021/acscatal.1c02876 |
(b) Shin, W. K.; Kim, H.; Jaladi, A. K.; An, D. K. Tetrahedron 2018, 74, 6310.
doi: 10.1016/j.tet.2018.09.031 |
|
(c) Ma, D. H.; Jaladi, A. K.; Lee, J. H.; Kim, T. S.; Shin, W. K.; Hwang, H.; An, D. K. ACS Omega 2019, 4, 15893.
doi: 10.1021/acsomega.9b01877 |
|
[9] |
Szewczyk, M.; Magre, M.; Zubar, V.; Rueping, M. ACS Catal. 2019, 9, 11634.
doi: 10.1021/acscatal.9b04086 |
[10] |
(a) Sousa, S. C. A.; Realista, S.; Royo, B. Adv. Synth. Catal. 2020, 362, 2437.
|
(b) Chang, J.; Fang, F.; Zhang, J.; Chen, X. Adv. Synth. Catal. 2020, 362, 2709.
|
|
[11] |
Tamang, S. R.; Bedi, D.; Shafiei-Haghighi, S.; Smith, C. R.; Crawford, C.; Findlater, M. Org. Lett. 2018, 20, 6695.
doi: 10.1021/acs.orglett.8b02775 pmid: 30339397 |
[12] |
(a) Wu, J.; Zeng, H.; Cheng, J.; Zheng, S.; Golen, J. A.; Manke, D. R.; Zhang, G. J. Org. Chem. 2018, 83, 9442.
doi: 10.1021/acs.joc.8b01094 |
(b) Zeng, H.; Wu, J.; Li, S.; Hui, C.; Ta, A.; Cheng, S.-Y.; Zheng, S.; Zhang, G. Org. Lett. 2019, 21, 401.
doi: 10.1021/acs.orglett.8b03583 |
|
(c) Vijjamarri, S.; O’Denius, T. M.; Yao, B.; Kubátová, A.; Du, G. Organometallics 2020, 39, 3375.
doi: 10.1021/acs.organomet.0c00448 |
|
[13] |
(a) Crimmin, M. R.; Hill, M. S. Top. Organomet. Chem. 2013, 45, 191.
pmid: 28513750 |
(b) Revunova, K.; Nikonov, G. I. Dalton Trans. 2015, 44, 840.
doi: 10.1039/c4dt02024c pmid: 28513750 |
|
(c) Rochat, R.; Lopez, M. J.; Tsurugi, H.; Mashima, K. ChemCatChem 2016, 8, 10.
doi: 10.1002/cctc.v8.1 pmid: 28513750 |
|
(d) Hill, M. S.; Liptrot, D. J.; Weetman, C. Chem. Soc. Rev. 2016, 45, 972.
doi: 10.1039/C5CS00880H pmid: 28513750 |
|
(e) Pellissier, H. Org. Biomol. Chem. 2017, 15, 4750.
doi: 10.1039/c7ob00903h pmid: 28513750 |
|
(f) Yang, D.; Wang, L.; Li, D.; Wang, R. Chem 2019, 5, 1108.
doi: 10.1016/j.chempr.2019.02.002 pmid: 28513750 |
|
[14] |
(a) Dong, Z.; Clososki, G. C.; Wunderlich, S. H.; Unsinn, A.; Li, J.; Knochel, P. Chem. Eur. J. 2009, 15, 457.
doi: 10.1002/chem.200801558 |
(b) Piller, F. M.; Bresser, T.; Fischer, M. K. R.; Knochel, P. J. Org. Chem. 2010, 75, 4365.
|
|
(c) Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 9794.
doi: 10.1002/anie.v50.42 |
|
(d) Benischke, A. D.; Ellwart, M.; Becker, M. R.; Knochel, P. Synthesis 2016, 48, 1101.
doi: 10.1055/s-00000084 |
|
[15] |
Davin, L.; McLellan, R.; Kennedy, A. R.; Hevia, E. Chem. Commun. 2017, 53, 11650.
doi: 10.1039/C7CC07193K |
[16] |
(a) Rossin, A.; Peruzzini, M. Chem. Rev. 2016, 116, 8848.
|
(b) Hill, M. S.; Liptrot, D. J.; Weetman, C. Chem. Soc. Rev. 2016, 45, 972.
doi: 10.1039/C5CS00880H |
|
[17] |
(a) Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, G. Chem. Eur. J. 2013, 19, 2776.
doi: 10.1002/chem.201203190 |
(b) Hill, M. S.; Dougall, D. J. M.; Mahon, M. F. Dalten Trans. 2010, 39, 11129.
|
|
[18] |
Magre, M.; Maity, B.; Falconnet, A.; Cavallo, L.; Rueping, M. Angew. Chem., Int. Ed. 2019, 58, 7025.
doi: 10.1002/anie.v58.21 |
[19] |
Jang, Y. K.; Magre, M.; Rueping, M. Org. Lett. 2019, 21, 8349.
doi: 10.1021/acs.orglett.9b03131 |
[20] |
Widegren, J. A.; Bennett, M. A.; Finke., R. G. J. Am. Chem. Soc. 2003, 125, 10301.
pmid: 12926954 |
[21] |
Chen, Z.; Chen, G.; Aboo, A. H.; Lggo, J.; Xiao, J. Asian J. Org. Chem. 2020, 9, 1174.
doi: 10.1002/ajoc.v9.8 |
[22] |
Schramm, S.; Agnetta, L.; Bermudez, M.; Gerwe, H.; Irmen, M.; Holze, J.; Littmann, T.; Wolber, G.; Tränkle, C.; Decker, M. Chem. Med. Chem. 2019, 14, 1349.
doi: 10.1002/cmdc.v14.14 |
[23] |
Wang, J.; Guo, Y.; Li, S.; Chen, X. Synlett 2021, 32, 1104.
doi: 10.1055/a-1479-5008 |
[24] |
Gennaiou, K.; Petsi, M.; Kakarikas, B.; Lordanidis, N.; Zografos, A. L. Adv. Synth. Catal. 2022, 364, 3059.
|
[25] |
Rooden, E. J.; Kohsiek, M.; Kreekel, R.; Esbroeck, A. C. M.; Nieuwendijk, A. M. C. H.; Janssen, A. P. A.; Berg, R. J. B. H. N.; Overkleeft, H. S.; Stelt, M. Chem. Asian J. 2018, 13, 3491.
doi: 10.1002/asia.v13.22 |
[26] |
Zeynizaden, B.; Aminzaden, F.; Mousavi, H. Res. Chem. Intermed. 2021, 47, 3289.
doi: 10.1007/s11164-021-04469-9 |
[27] |
Zhu, Z.; Dai, P.; Wu, Z.; Xue, M.; Yao, Y.; Shen, Q.; Bao, X. Catal. Commun. 2018, 112, 26.
doi: 10.1016/j.catcom.2018.04.014 |
[28] |
Korvinson, K. A.; Akula, H. K.; Malinchak, C. T.; Sebastian, D.; Wei, W.; Khandaker, T. A.; Andrzejewska, M. R.; Zajc, B.; Lakshman, M. K. Adv. Synth. Catal. 2020, 362, 166.
|
[29] |
Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Org. Lett. 2013, 15, 2278.
doi: 10.1021/ol400856g pmid: 23590578 |
[30] |
Xue, M.-M.; Chang, J.; Zhang, J.; Chen, X. Dalton Trans. 2022, 51, 2304.
doi: 10.1039/D1DT04179G |
[31] |
Timelthaler, D.; Topf, C. J. Catal. 2022, 413, 478.
doi: 10.1016/j.jcat.2022.07.001 |
[32] |
Shi, Y.; Wang, Y.; Huang, Z.; Zhang, F.; Shao, Y. ACS Omega 2022, 7, 18876.
doi: 10.1021/acsomega.2c01866 |
[33] |
Rodiansono, N.; Dewi, H.; Mustikasari, K.; Astuti, M.; Husain, S.; Sutomo, N. RSC Adv. 2022, 12, 13319.
doi: 10.1039/d2ra02103j pmid: 35520112 |
[34] |
Zhang, G.-Y.; Ruan, S.-H.; Li, Y.-Y.; Gao, J.-X. Chin. Chem. Lett. 2021, 32, 1415.
doi: 10.1016/j.cclet.2020.10.023 |
[35] |
Kuciński, K.; Hreczycho, G. Eur. J. Org. Chem. 2020, 2020, 552.
doi: 10.1002/ejoc.201901514 |
[36] |
Bauri, S.; Donthireddy, S. N. R.; Illam, P. M.; Rit, A. Inorg. Chem. 2018, 57, 14582.
doi: 10.1021/acs.inorgchem.8b02246 |
[37] |
Hirao, Y.; Katayama, Y.; Misunuma, K.; Kanai, M. Org. Lett. 2020, 22, 8584.
doi: 10.1021/acs.orglett.0c03180 pmid: 33074009 |
[38] |
Dhokale, B.; Susarrey-Arce, A.; Pekkari, A.; Runemark, A.; Moth- Poulsen, K.; Langhammer, C.; Härelind, H.; Busch, M.; Vandichel, M.; Sundén, H. ChemCatChem 2020, 12, 6344.
doi: 10.1002/cctc.v12.24 |
[39] |
Wang, Q.; Shih, J.-L.; Tsui, K. Y; Laconsay, C. J.; Tantillo, D. J.; May, J. A. J. Org. Chem. 2022, 87, 8983.
doi: 10.1021/acs.joc.2c00696 |
[40] |
Cai, Y.-M.; Xu, Y.-T.; Zhang, X.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 8479.
doi: 10.1021/acs.orglett.9b03317 |
[41] |
Ma, Y.; Woltornist, R. A.; Algera, R. F.; Collum, D. B. J. Am. Chem. Soc. 2021, 143, 13370.
doi: 10.1021/jacs.1c06528 |
[42] |
Tang, J.; Dong, W.; Chen, F.; Deng, L.; Xian, M. Catal. Sci. Technol. 2021, 11, 5564.
doi: 10.1039/D1CY00904D |
[43] |
Orlandi, M.; Benaglia, M.; Tosi, F.; Annunziata, R.; Cozzi, F. J. Org. Chem. 2016, 81, 3037.
doi: 10.1021/acs.joc.6b00191 pmid: 26937628 |
[1] | 曹同阳, 李玮, 王力竞. N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展[J]. 有机化学, 2024, 44(2): 508-524. |
[2] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[3] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[4] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[5] | 席敏, 段超, 迟捷, 付甜, 苏小龙, 王宏社. 腐殖酸作用下Strecker反应快速高效合成α-氨基腈[J]. 有机化学, 2023, 43(9): 3312-3318. |
[6] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[7] | 马虎, 黄丹凤, 王克虎, 唐朵朵, 冯杨, 任园园, 王君娇, 胡雨来. 3-(三氟甲基)吡唑类化合物的合成[J]. 有机化学, 2023, 43(9): 3257-3267. |
[8] | 张晓轲, 郑相如, 王朝永. 偶氮次甲基亚胺与氮杂二烯前体的[4+3]环加成反应构建功能化四氮杂䓬衍生物[J]. 有机化学, 2023, 43(9): 3180-3187. |
[9] | 鄢伯钰, 吴阶良, 邓金飞, 陈丹, 叶秀深, 姚秋丽. 光诱导醇的直接脱羟基衍生化研究进展[J]. 有机化学, 2023, 43(9): 3055-3066. |
[10] | 陈乡萍, 孟晨湘, 李梦娜, 楚尚敏, 朱欣欣, 许凯, 刘澜涛, 王涛, 张凤华, 李飞. 水相中抗坏血酸钠促进铁催化合成含硫芳香伯胺化合物[J]. 有机化学, 2023, 43(8): 2800-2807. |
[11] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[12] | 吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763. |
[13] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[14] | 安大列, 包志鹏, 吴小锋. 含碳氟类底物参与的羰基化反应研究进展[J]. 有机化学, 2023, 43(7): 2304-2312. |
[15] | 杨星星, 樊泳澔, 崔晶晶. 2,6-二亚胺吡啶主族配合物的研究进展[J]. 有机化学, 2023, 43(7): 2338-2350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||