有机化学 ›› 2024, Vol. 44 ›› Issue (3): 728-747.DOI: 10.6023/cjoc202311032 上一篇 下一篇
综述与进展
收稿日期:
2023-11-30
修回日期:
2024-01-30
发布日期:
2024-04-02
基金资助:
Aman Hasil, Rui Chang, Juntao Ye()
Received:
2023-11-30
Revised:
2024-01-30
Published:
2024-04-02
Contact:
*E-mail: juntaoye@sjtu.edu.cn
Supported by:
文章分享
惰性C—H键直接选择性官能团化反应是有机合成领域长久以来的挑战之一. 虽然已经发展了多种策略, 但仍亟待发展无需添加过渡金属和氧化剂的新方法. 近年来, 光电催化作为一种新兴策略, 能够在温和条件下实现包括直接C—H键官能团化在内的多种挑战性转化反应, 表现出强大的潜力. 从机理的角度出发, 总结了通过阳极氧化的光电催化策略实现C—H键官能团化反应的最新研究进展, 并简单讨论了这个新兴领域所面临的挑战和机遇.
Hasil Aman, 常瑞, 叶俊涛. 氧化型光电催化促进的C—H键官能团化反应研究进展[J]. 有机化学, 2024, 44(3): 728-747.
Aman Hasil, Rui Chang, Juntao Ye. Recent Advances on C—H Functionalization via Oxidative Electrophotocatalysis[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 728-747.
[1] |
(a) Davies H. M. L.; Bois J. D.; Yu J.-Q. Chem. Soc. Rev. 2011, 40, 1976.
doi: 10.1039/c0cs00182a pmid: 37117588 |
(b) Davies H. M. L.; Morton D. J. Org. Chem 2016, 81, 343.
doi: 10.1021/acs.joc.5b02818 pmid: 37117588 |
|
(c) Achar T. K.; Maiti S.; Jana S.; Maiti D. ACS Catal. 2020, 10, 13748.
doi: 10.1021/acscatal.0c03743 pmid: 37117588 |
|
(d) Zhao Q.; Meng G.; Nolan S. P.; Szostak M. Chem. Rev. 2020, 120, 1981.
doi: 10.1021/acs.chemrev.9b00634 pmid: 37117588 |
|
(e) Li P.; Terrett J. A.; Zbieg J. R. ACS Med. Chem. Lett. 2020, 11, 2120.
doi: 10.1021/acsmedchemlett.0c00436 pmid: 37117588 |
|
(f) Oliva M.; Coppola G. A.; Van der Eycken E. V.; Sharma U. K. Adv. Synth. Catal. 2021, 363, 1810.
doi: 10.1002/adsc.v363.7 pmid: 37117588 |
|
(g) Guillemard L.; Kaplaneris N.; Ackermann L.; Johansson M. J. Nat. Rev. Chem. 2021, 5, 522.
doi: 10.1038/s41570-021-00300-6 pmid: 37117588 |
|
[2] |
(a) Giri R.; Shi B.-F.; Engle K. M.; Maugel N.; Yu J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
doi: 10.1039/b816707a pmid: 37163671 |
(b) Gensch T.; Hopkinson M. N.; Glorius F.; Wencel-Delord J. Chem. Soc. Rev. 2016, 45, 2900.
doi: 10.1039/c6cs00075d pmid: 37163671 |
|
(c) Liu B.; Romine A. M.; Rubel C. Z.; Engle K. M.; Shi B.-F. Chem. Rev. 2021, 121, 14957.
doi: 10.1021/acs.chemrev.1c00519 pmid: 37163671 |
|
(d) Sinha S. K.; Guin S.; Maiti S.; Biswas J. P.; Porey S.; Maiti D.; Chem. Rev. 2021, 122, 5682.
doi: 10.1021/acs.chemrev.1c00220 pmid: 37163671 |
|
(e) Lam N. Y. S.; Wu K.; Yu J. Q. Angew. Chem., Int. Ed. 2021, 60, 15767.
doi: 10.1002/anie.v60.29 pmid: 37163671 |
|
(f) Dutta U.; Maiti S.; Bhattacharya T.; Maiti D. Science 2021, 372, 701.
pmid: 37163671 |
|
(g) Zhang J.; Rueping M. Chem. Soc. Rev. 2023, 52, 4099.
doi: 10.1039/D3CS00023K pmid: 37163671 |
|
(h) Wang Y.; He Y.; Zhu S. Acc. Chem. Res. 2023, 56, 3475.
doi: 10.1021/acs.accounts.3c00540 pmid: 37163671 |
|
(i) Docherty J. H.; Lister T. M.; McArthur G.; Findlay M. T.; Domingo-Legarda P.; Kenyon J.; Choudhary S.; Larrosa I. Chem. Rev. 2023, 123, 7692.
doi: 10.1021/acs.chemrev.2c00888 pmid: 37163671 |
|
(j) Li L.-J.; He Y.; Yang Y.; Guo J.; Lu Z.; Wang C.; Zhu S.; Zhu S.-F. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202303412.
pmid: 37163671 |
|
[3] |
(a) Vega-Peñaloza A.; Mateos J.; Companyó X.; Escudero-Casao M.; Dell'Amico L. Angew. Chem., Int. Ed. 2020, 60, 1082.
doi: 10.1002/anie.v60.3 pmid: 32765795 |
(b) Guillemard L.; Wencel-Delord J. Beilstein J. Org. Chem. 2020, 16, 1754.
doi: 10.3762/bjoc.16.147 pmid: 32765795 |
|
(c) Kang Q.-Q.; Wu W.; Li Q.; Wei W.-T. Green Chem. 2020, 22, 3060.
doi: 10.1039/D0GC01088J pmid: 32765795 |
|
(d) Zhou R.; Ma L.; Yang X.; Cao J. Org. Chem. Front. 2021, 8, 426.
doi: 10.1039/D0QO01299H pmid: 32765795 |
|
(e) Chang L.; An Q.; Duan L.; Feng K.; Zuo Z. Chem. Rev. 2021, 122, 2429.
doi: 10.1021/acs.chemrev.1c00256 pmid: 32765795 |
|
(f) Guo W.; Wang Q.; Zhu J. Chem. Soc. Rev. 2021, 50, 7359.
doi: 10.1039/D0CS00774A pmid: 32765795 |
|
(g) Liao L.-L.; Song L.; Yan S.-S.; Ye J.-H.; Yu D.-G. Trends Chem. 2022, 4, 512.
doi: 10.1016/j.trechm.2022.03.008 pmid: 32765795 |
|
(h) Wang P.-Z.; Xiao W.-J.; Chen J.-R. Nat. Rev. Chem. 2022, 7, 35.
doi: 10.1038/s41570-022-00441-2 pmid: 32765795 |
|
(i) Li Z.; Li C.; Ding Y.; Huo H. Coord. Chem. Rev. 2022, 460, 214479.
doi: 10.1016/j.ccr.2022.214479 pmid: 32765795 |
|
[4] |
(a) Yang Q. L.; Fang P.; Mei T. S. Chin. J. Chem. 2018, 36, 338.
doi: 10.1002/cjoc.v36.4 pmid: 35229835 |
(b) Weidner J.; Barwe S.; Sliozberg K.; Piontek S.; Masa J.; Apfel U.-P.; Schuhmann W. Beilstein J. Org. Chem. 2018, 14, 1436.
doi: 10.3762/bjoc.14.121 pmid: 35229835 |
|
(c) Siu J. C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547.
doi: 10.1021/acs.accounts.9b00529 pmid: 35229835 |
|
(d) Heard D. M.; Lennox A. J. J. Angew. Chem. Int. Ed. 2020, 59, 18866.
doi: 10.1002/anie.v59.43 pmid: 35229835 |
|
(e) Galeotti M.; Salamone M.; Bietti M. Chem. Soc. Rev. 2022, 51, 2171.
doi: 10.1039/d1cs00556a pmid: 35229835 |
|
(f) Wang Y.; Dana S.; Long H.; Xu Y.; Li Y.; Kaplaneris N.; Ackermann L. Chem. Rev. 2023, 123, 11269.
doi: 10.1021/acs.chemrev.3c00158 pmid: 35229835 |
|
(g) Tan Z.; Zhang H.; Xu K.; Zeng C. Sci. China: Chem. 2024, 67, 450.
doi: 10.1007/s11430-023-1230-3 pmid: 35229835 |
|
[5] |
(a) Plesniak M. P.; Huang H.-M.; Procter D. J. Nat. Rev. Chem. 2017, 372, 701.
pmid: 35965690 |
(b) Capaldo L.; Ravelli D. Eur. J. Org. Chem. 2017, 2017, 2056.
doi: 10.1002/ejoc.201601485 pmid: 35965690 |
|
(c) Liu Y.; Yi H.; Lei A. Chin. J. Chem. 2018, 36, 692.
doi: 10.1002/cjoc.v36.8 pmid: 35965690 |
|
(d) Holmberg-Douglas N.; Nicewicz D. A. Chem. Rev. 2021, 122, 1925.
doi: 10.1021/acs.chemrev.1c00311 pmid: 35965690 |
|
(e) Murray P. R. D.; Cox J. H.; Chiappini N. D.; Roos C. B.; McLoughlin E. A.; Hejna B. G.; Nguyen S. T.; Ripberger H. H.; Ganley J. M.; Tsui E.; Shin N. Y.; Koronkiewicz B.; Qiu G.; Knowles R. R. Chem. Rev. 2021, 122, 2017.
doi: 10.1021/acs.chemrev.1c00374 pmid: 35965690 |
|
(f) Golden D. L.; Suh S.-E.; Stahl S. S. Nat. Rev. Chem. 2022, 6, 405.
doi: 10.1038/s41570-022-00388-4 pmid: 35965690 |
|
(g) Wu X.; Zhu C. Trends Chem. 2022, 4, 580.
doi: 10.1016/j.trechm.2022.04.003 pmid: 35965690 |
|
(h) Cheng S.; Li Q.; Cheng X.; Lin Y. M.; Gong L. Chin. J. Chem. 2022, 40, 2825.
doi: 10.1002/cjoc.v40.23 pmid: 35965690 |
|
(i) Liu Y.; Li P.; Wang Y.; Qiu Y. Angew. Chem., Int. Ed. 2023, 62, e2023066.
pmid: 35965690 |
|
(j) van der Zee, L. J. C.; Pahar, S.; Richards, E.; Melen, R. L.; Slootweg, J. C. Chem. Rev. 2023, 123, 9653.
doi: 10.1021/acs.chemrev.3c00217 pmid: 35965690 |
|
(k) Bellotti P.; Huang H.-M.; Faber T.; Glorius F. Chem. Rev. 2023, 123, 4237.
doi: 10.1021/acs.chemrev.2c00478 pmid: 35965690 |
|
[6] |
Teets T. S.; Wu Y.; Kim D. Synlett 2021, 33, 1154.
doi: 10.1055/a-1390-9065 |
[7] |
Xu H.-C.; Xu F.; Lai X.-L. Synlett 2020, 32, 369.
doi: 10.1055/a-1296-8652 |
[8] |
(a) Ma R.; Lin G.; Zhou Y.; Liu Q.; Zhang T.; Shan G.; Yang M.; Wang J. npj Comput. Mater. 2019, 5, 78.
doi: 10.1038/s41524-019-0210-3 pmid: 35816101 |
(b) Capaldo L.; Quadri L. L.; Ravelli D. Angew. Chem., Int. Ed. 2019, 58, 17508.
doi: 10.1002/anie.v58.49 pmid: 35816101 |
|
(c) Lv X.; Xu H.; Yin Y.; Zhao X.; Jiang Z. Chin. J. Chem. 2020, 38, 1480.
doi: 10.1002/cjoc.v38.12 pmid: 35816101 |
|
(d) Yu Y.; Guo P.; Zhong J.-S.; Yuan Y.; Ye K.-Y. Org. Chem. Front. 2020, 7, 131.
doi: 10.1039/C9QO01193E pmid: 35816101 |
|
(e) Buglioni L.; Raymenants F.; Slattery A.; Zondag S. D. A.; Noël T. Chem. Rev. 2021, 122, 2752.
doi: 10.1021/acs.chemrev.1c00332 pmid: 35816101 |
|
(f) Lu L.; Li H.; Lei A. Chin. J. Chem. 2021, 40, 256.
doi: 10.1002/cjoc.v40.2 pmid: 35816101 |
|
(g) Hardwick T.; Ahmed N. ACS Sustainable Chem. Eng. 2021, 9, 4324.
doi: 10.1021/acssuschemeng.0c08434 pmid: 35816101 |
|
(h) De Sarkar S.; Maiti D.; Halder A.; Mahanty K. Synthesis 2022, 55, 400.
doi: 10.1055/a-1944-9494 pmid: 35816101 |
|
(i) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
doi: 10.31635/ccschem.021.202101451 pmid: 35816101 |
|
(j) Huang H.; Steiniger K. A.; Lambert T. H. J. Am. Chem. Soc. 2022, 144, 12567.
doi: 10.1021/jacs.2c01914 pmid: 35816101 |
|
(k) Lu J.; Yao Y.; Li L.; Fu N. J. Am. Chem. Soc. 2023, 145, 26774.
doi: 10.1021/jacs.3c08839 pmid: 35816101 |
|
(l) Tian X.; Liu Y.; Yakubov S.; Schütte J.; Chiba S.; Barham J. P. Chem. Soc. Rev. 2024, 53, 263.
doi: 10.1039/D2CS00581F pmid: 35816101 |
|
(m) Ye Z.; Liu H.; Zhang F. Chin. J. Org. Chem. 2024, 44, DOI: 10.6023/cjoc202310034. (in Chinese)
pmid: 35816101 |
|
( 叶增辉, 刘华清, 张逢质, 有机化学, 2024, 44, DOI: 10.6023/ cjoc202310034.)
pmid: 35816101 |
|
[9] |
Moutet J.-C.; Reverdy G. Tetrahedron Lett. 1979, 20, 2389.
doi: 10.1016/S0040-4039(01)86300-0 |
[10] |
(a) Zhang X.; Guo S.-X.; Gandionco K. A.; Bond A. M.; Zhang J. Mater. Today Adv. 2020, 7, 100074.
pmid: 37676728 |
(b) Kim H.; Kim H.; Lambert T. H.; Lin S. J. Am. Chem. Soc. 2020, 142, 2087.
doi: 10.1021/jacs.9b10678 pmid: 37676728 |
|
(c) Lee M.-Y.; Kahl C.; Kaeffer N.; Leitner W. JACS Au 2022, 2, 573.
doi: 10.1021/jacsau.1c00574 pmid: 37676728 |
|
(d) Shao W.; Lu B.; Cao J.; Zhang J.; Cao H.; Zhang F.; Zhang C. Chem.-Asian J. 2022, 18, e202201093.
doi: 10.1002/asia.v18.2 pmid: 37676728 |
|
(e) Li J.; Chen F.; Renata H. J. Am. Chem. Soc. 2022, 144, 19238.
doi: 10.1021/jacs.2c09048 pmid: 37676728 |
|
(f) Edgecomb J. M.; Alektiar S. N.; Cowper N. G. W.; Sowin J. A.; Wickens Z. K. J. Am. Chem. Soc. 2023, 145, 20169.
doi: 10.1021/jacs.3c06347 pmid: 37676728 |
|
[11] |
Xue X.-S.; Ji P.; Zhou B.; Cheng J.-P. Chem. Rev. 2017, 117, 8622.
doi: 10.1021/acs.chemrev.6b00664 |
[12] |
(a) Minisci F.; Bernardi R.; Bertinin F.; Galli R.; Perchinijmmo M. Tetrahedron 1971, 27, 3575.
doi: 10.1016/S0040-4020(01)97768-3 |
(b) Wang M.; Zhang C.; Zhao H.; Jiang H.; Dixneuf P. H.; Zhang M. CCS Chem. 2024, 6, 342.
doi: 10.31635/ccschem.023.202303085 |
|
(c) Wang M.; Zhang C.; Ci C.; Jiang H.; Dixneuf P. H.; Zhang M. J. Am. Chem. Soc. 2023, 145, 10967.
doi: 10.1021/jacs.3c02776 |
|
[13] |
Proctor R. S. J.; Phipps R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.
doi: 10.1002/anie.v58.39 |
[14] |
Yan H.; Hou Z. W.; Xu H. C. Angew. Chem., Int. Ed. 2019, 58, 4592.
doi: 10.1002/anie.v58.14 |
[15] |
Lai X. L.; Shu X. M.; Song J.; Xu H. C. Angew. Chem., Int. Ed. 2020, 59, 10626.
doi: 10.1002/anie.v59.26 |
[16] |
Chen D.; Jiang J.; Wan J. P. Chin. J. Chem. 2022, 40, 2582.
doi: 10.1002/cjoc.v40.21 |
[17] |
Struwe J.; Ackermann L. Faraday Discuss. 2023, 247, 79.
doi: 10.1039/d3fd00076a pmid: 37466161 |
[18] |
Qi J.; Xu J.; Ang H. T.; Wang B.; Gupta N. K.; Dubbaka S. R.; O’Neill P.; Mao X.; Lum Y.; Wu J. J. Am. Chem. Soc. 2023, 145, 24965.
|
[19] |
Ren L.-Q.; Li N.; Ke J.; He C. Org. Chem. Front. 2022, 9, 6400.
doi: 10.1039/D2QO01387H |
[20] |
Wan Q.; Hou Z.-W.; Zhao X.-R.; Xie X.; Wang L. Org. Lett. 2023, 25, 1008.
doi: 10.1021/acs.orglett.3c00144 |
[21] |
Zhao X. R.; Zhang Y. C.; Hou Z. W.; Wang L. Chin. J. Chem. 2023, 41, 2963.
doi: 10.1002/cjoc.v41.22 |
[22] |
Luo C.; Lu W.-H.; Wang G.-Q.; Zhang Z.-B.; Li H.-Q.; Han P.; Yang D.; Jing L.-H.; Wang C. J. Org. Chem 2022, 87, 3567.
doi: 10.1021/acs.joc.1c03125 |
[23] |
Lai X.-L.; Xu H.-C. J. Am. Chem. Soc. 2023, 145, 18753.
doi: 10.1021/jacs.3c07146 |
[24] |
(a) Sambiagio C.; Marsden S. P.; Blacker A. J.; McGowan P. C. Chem. Soc. Rev. 2014, 43, 3525.
doi: 10.1039/c3cs60289c pmid: 24585151 |
(b) Cui T.; Ye C. X.; Thelemann J.; Jenisch D.; Meggers E. Chin. J. Chem. 2023, 41, 2065.
doi: 10.1002/cjoc.v41.17 pmid: 24585151 |
|
(c) Huang G. H.; Li J. M.; Huang J. J.; Lin J. D.; Chuang G. J. Chem.-Eur. J. 2014, 20, 5240.
doi: 10.1002/chem.v20.18 pmid: 24585151 |
|
[25] |
Seifinoferest B.; Tanbakouchian A.; Larijani B.; Mahdavi M. Asian J. Org. Chem. 2021, 10, 1319.
doi: 10.1002/ajoc.v10.6 |
[26] |
Zhong Q.; Wang P.-L.; Gao H.; Ma F.; Yang Y.; Li H. Green Chem. 2023, 25, 3982.
doi: 10.1039/D3GC00380A |
[27] |
(a) Huang H.; Strater Z. M.; Rauch M.; Shee J.; Sisto T. J.; Nuckolls C.; Lambert T. H. Angew. Chem., nt. Ed. 2019, 58, 13318.
|
(b) Hou Z. W W.; Xu H. C. ChemElectroChem 2021, 8, 1571.
doi: 10.1002/celc.v8.9 |
|
[28] |
Žurauskas J.; Boháčová S.; Wu S.; Butera V.; Schmid S.; Domański M.; Slanina T.; Barham J. P. Angew. Chem., Int. Ed. 2023, 62, e202307550
doi: 10.1002/anie.v62.44 |
[29] |
Huang H.; Lambert T. H. Angew. Chem., Int. Ed. 2021, 60, 11163.
doi: 10.1002/anie.v60.20 |
[30] |
Tang S.; Guillot R.; Grimaud L.; Vitale M. R.; Vincent G. Org. Lett. 2022, 24, 2125.
doi: 10.1021/acs.orglett.2c00364 |
[31] |
Shen T.; Lambert T. H. Science 2021, 371, 620.
doi: 10.1126/science.abf2798 pmid: 33542135 |
[32] |
Shen T.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 8597.
doi: 10.1021/jacs.1c03718 pmid: 34076424 |
[33] |
Shen T.; Li Y.-L.; Ye K.-Y.; Lambert T. H. Nature 2022, 614, 275.
doi: 10.1038/s41586-022-05608-x |
[34] |
Cai C.-Y.; Lai X.-L.; Wang Y.; Hu H.-H.; Song J.; Yang Y.; Wang C.; Xu H.-C. Nat. Catal. 2022, 5, 943.
doi: 10.1038/s41929-022-00855-7 |
[35] |
Lai X.-L.; Chen M.; Wang Y.; Song J.; Xu H.-C. J. Am. Chem. Soc. 2022, 144, 20201.
doi: 10.1021/jacs.2c09050 |
[36] |
Yuan Y.; Yang J.; Zhang J. Chem. Sci. 2023, 14, 705.
doi: 10.1039/d2sc05428k pmid: 36741520 |
[37] |
Wang D.; Zhu N.; Chen P.; Lin Z.; Liu G. J. Am. Chem. Soc. 2017, 139, 15632.
doi: 10.1021/jacs.7b09802 |
[38] |
Capaldo L.; Ravelli D.; Fagnoni M. Chem. Rev. 2021, 122, 1875.
doi: 10.1021/acs.chemrev.1c00263 pmid: 34355884 |
[39] |
Zhang Y.; Sun X.; Su J.-H.; Li T.; Du C.; Li K.; Sun Q.; Zha Z.; Wang Z. Org. Lett. 2023, 25, 5067.
doi: 10.1021/acs.orglett.3c01751 pmid: 37387463 |
[40] |
Wang Y.; Li L.; Fu N. ACS Catal. 2022, 12, 10661.
doi: 10.1021/acscatal.2c02934 |
[41] |
Niu L.; Jiang C.; Liang Y.; Liu D.; Bu F.; Shi R.; Chen H.; Chowdhury A. D.; Lei A. J. Am. Chem. Soc. 2020, 142, 17693.
doi: 10.1021/jacs.0c08437 |
[42] |
Wang F.; Stahl S. S. Angew. Chem., Int. Ed. 2019, 58, 6385.
doi: 10.1002/anie.v58.19 |
[43] |
Ioannou D. I.; Capaldo L.; Sanramat J.; Reek J. N. H.; Noël T. Angew. Chem., Int. Ed. 2023, 62, e202315881.
doi: 10.1002/anie.v62.52 |
[44] |
Zhang L.; Liardet L.; Luo J.; Ren D.; Grätzel M.; Hu X. Nat. Catal. 2019, 2, 366.
doi: 10.1038/s41929-019-0231-9 |
[45] |
Duyi S.; Linghui L.; Ge J.; Yujia L.; Xinhui Z.; Peiwei G.; Fanjun Z.; Mianran C. Chin. J. Org. Chem. 2024, 44, DOI: 10.6023/cjoc202308024. (in Chinese)
|
( 沈都益, 李玲慧, 靳鸽, 梁雨佳, 张欣慧, 公培伟, 张范军, 晁绵冉, 有机化学, 2024, 44, DOI: 10.6023/cjoc202308024.)
|
|
[46] |
Zhang W.; Carpenter K. L.; Lin S. Angew. Chem., Int. Ed. 2019, 59, 409.
doi: 10.1002/anie.v59.1 |
[47] |
Huang H.; Strater Z. M.; Lambert T. H. J. Am. Chem. Soc. 2020, 142, 1698.
doi: 10.1021/jacs.9b11472 pmid: 31904939 |
[48] |
Wilson R. M.; Lambert T. H. Acc. Chem. Res. 2022, 55, 3057.
doi: 10.1021/acs.accounts.2c00546 |
[49] |
Qin Y.; Zhu L.; Luo S. Chem. Rev. 2017, 117, 9433.
doi: 10.1021/acs.chemrev.6b00657 |
[50] |
(a) Iqbal S. A.; Pahl J.; Yuan K.; Ingleson M. J. Chem. Soc. Rev. 2020, 49, 4564.
doi: 10.1039/C9CS00763F |
(b) Yang C.-H. Org. Chem. Front. 2023, 10, 6010.
doi: 10.1039/D3QO01487H |
|
(c) Zou C.; Wu H.; Ji Y.; Zhang P.; Cui H.; Huang G.; Zhang C. Chin. J. Chem. 2022, 40, 2437.
doi: 10.1002/cjoc.v40.20 |
|
[51] |
Moniruzzaman M.; Afrin S.; Ali M. K. Asian J. Org. Chem. 2023, 12, e202300090.
doi: 10.1002/ajoc.v12.4 |
[52] |
Zhong P.-F.; Tu J.-L.; Zhao Y.; Zhong N.; Yang C.; Guo L.; Xia W. Nat. Commun. 2023, 14, 6530.
doi: 10.1038/s41467-023-42264-9 |
[53] |
Tan Z.; Jiang Y.; Xu K.; Zeng C. J. Catal. 2023, 417, 473.
doi: 10.1016/j.jcat.2022.12.033 |
[54] |
(a) Li C.-J. Acc. Chem. Res. 2008, 42, 335.
doi: 10.1021/ar800164n |
(b) Li C. J. Chin. J. Chem. 2022, 40, 838.
doi: 10.1002/cjoc.v40.7 |
|
[55] |
Xu P.; Chen P. Y.; Xu H. C. Angew. Chem., Int. Ed. 2020, 59, 14275.
doi: 10.1002/anie.v59.34 |
[56] |
Capaldo L.; Quadri L. L.; Merli D.; Ravelli D. Chem. Commun. 2021, 57, 4424.
doi: 10.1039/D1CC01012C |
[57] |
Xiong P.; Ivlev S. I.; Meggers E. Nat. Catal. 2023, 6, 1186.
doi: 10.1038/s41929-023-01050-y |
[1] | 吴际伟, 何俊, 王晶晶, 李丽霞, 徐采玉, 周洁, 李子荣, 许华建. 电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应[J]. 有机化学, 2024, 44(3): 972-980. |
[2] | 朱子乐, 李鹏飞, 仇友爱. 电化学芳烃C(sp2)—H胺化反应的研究进展[J]. 有机化学, 2024, 44(3): 871-891. |
[3] | 陈红斌, 杨思佳, 叶智鹏, 陈凯, 向皞月, 阳华. 以路易斯碱硼烷为氢供体电催化还原喹啉及酮[J]. 有机化学, 2024, 44(3): 966-971. |
[4] | 叶增辉, 刘华清, 张逢质. 有机光电催化合成研究进展[J]. 有机化学, 2024, 44(3): 840-870. |
[5] | 黄健, 张文珍. 碳氮键参与的电化学阴极还原反应研究进展[J]. 有机化学, 2024, 44(3): 825-839. |
[6] | 陈远航, 何劲宇, 张博, 王延钊, 孔令轩, 钱伟烽, 王娜娜, 段闻喜, 欧阳妍妍, 朱翠菊, 徐浩. 不对称电化学有机合成[J]. 有机化学, 2024, 44(3): 748-779. |
[7] | 王竣永, 李娜, 柯杰, 何川. 电化学硅基化反应的研究进展[J]. 有机化学, 2024, 44(3): 927-939. |
[8] | 段芳颖, 原孟磊, 张健. 无机小分子还原耦合选择性氧化反应的成对电解[J]. 有机化学, 2024, 44(3): 809-824. |
[9] | 吕帅, 朱钢国, 姚金忠, 周宏伟. 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024, 44(3): 780-808. |
[10] | 杨帆, 方婷, 杨桂春, 高梦. 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024, 44(3): 1021-1030. |
[11] | 孙雪, 颜廷涛, 闫克鲁, 杨建静, 文江伟. 电化学促使α-重氮酯的磷酸化构筑亚膦酸腙[J]. 有机化学, 2024, 44(3): 1013-1020. |
[12] | 方新月, 黄雅雯, 胡新伟, 阮志雄. 电化学修饰氨基酸和多肽类化合物的研究进展[J]. 有机化学, 2024, 44(3): 903-926. |
[13] | 李梦帆, 程旭. 烯丙基芳香化合物的电化学选择性氧化酯化[J]. 有机化学, 2024, 44(3): 1005-1012. |
[14] | 何蔺恒, 夏稳, 周玉祥, 于贤勇. 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024, 44(3): 997-1004. |
[15] | 周兰, 何红, 杨德巧, 侯中伟, 王磊. N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024, 44(3): 981-988. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||