有机化学 ›› 2024, Vol. 44 ›› Issue (3): 748-779.DOI: 10.6023/cjoc202311004 上一篇    下一篇

所属专题: 光电催化综述合集

综述与进展

不对称电化学有机合成

陈远航, 何劲宇, 张博, 王延钊, 孔令轩, 钱伟烽, 王娜娜, 段闻喜, 欧阳妍妍, 朱翠菊*(), 徐浩*()   

  1. 华中师范大学化学学院 武汉 430079
  • 收稿日期:2023-11-03 修回日期:2024-01-23 发布日期:2024-04-02
  • 作者简介:共同第一作者
  • 基金资助:
    国家自然科学基金(21801087); 国家自然科学基金(22201089); 华中师范大学基础研究基金(CCNU19QN064)

Asymmetric Electrochemical Organic Synthesis

Yuanhang Chen, Jinyu He, Bo Zhang, Yanzhao Wang, Lingxuan Kong, Weifeng Qian, Na'na Wang, Wenxi Duan, Yanyan Ouyang, Cuiju Zhu(), Hao Xu()   

  1. College of Chemistry, Central China Normal University, Wuhan 430079
  • Received:2023-11-03 Revised:2024-01-23 Published:2024-04-02
  • Contact: *E-mail: cuiju.zhu@ccnu.edu.cn; hao.xu@ccnu.edu.cn
  • About author:These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(21801087); National Natural Science Foundation of China(22201089); Fundamental Research Funds for the Central Universities of Central China Normal University(CCNU19QN064)

有机电化学合成可以追溯到19世纪, 其发展历史悠久. 而将不对称催化和有机电化学合成结合开辟新的合成方法, 已逐渐成为合成手性化合物的重要途经之一. 因此, 不对称电化学合成吸引了众多有机合成研究者的关注, 在近几十年间, 不对称电化学合成发展迅速且成效卓越, 已成为新兴领域. 不对称电合成可以突破传统合成的限制, 通过调节电流、电压以改变反应的选择性, 甚至开发出传统合成方法无法实现的策略, 并且具备温和高效、绿色环保等优势. 目前, 不对称电化学已与有机小分子催化、金属催化、光催化、酶催化等领域相结合, 在合成具有药物活性分子等方面有着巨大潜力, 但不对称电化学的发展仍有许多局限性, 探索新的电化学不对称催化体系仍然有巨大的挑战性, 还有很多未知需要探索. 基于此, 本文总结了近二十年不对称电化学的进展, 依据催化剂类型不同, 分为金属电化学还原不对称催化、金属电化学氧化不对称催化、有机电化学还原不对称催化及有机电化学氧化不对称催化四个方面介绍不对称电化学的研究成果.

关键词: 电化学, 不对称合成, 不对称电化学合成, 金属催化, 有机催化

Organic electrosynthesis can be traced back to the 19th century. The development of electroorganic synthesis has a long history. The combination of asymmetric catalysis and organic electrosynthesis opens up a new avenue for asymmetric organic synthesis. Thus, it has gradually emerged as a crucial approach for chiral compounds synthesis in recent years. Therefore, asymmetric electrosynthesis has garnered major attention of many organic synthetic researchers, and achieved considerable advances. Asymmetric electrosynthesis can transcend the limitations of traditional synthesis, controlling selectivity of the reaction through current and voltage adjustments. Moreover electrochemical synthesis is a novel sustainable methodology by replaced toxic and costly chemicals with renewable electricity. At present, asymmetric electrochemistry has been combined with organocatalysis, metal catalysis, photocatalysis, enzyme catalysis and other fields, showcasing significant potential in the synthesis of drug molecules. However, the asymmetric electrochemistry still presents several challenges to control the chemo-, regio-, and enantioselectivities. In this review, the breakthroughs and advances of asymmetric electrochemistry in the past 20 years are summarized. This overview of the field is organized by reaction types: metal reduction catalysis, metal oxidation catalysis, organic reduction catalysis and organic oxidation catalysis.

Key words: electrochemistry, asymmetric synthesis, asymmetric electrochemistry, metal catalysis, organocatalysis