有机化学 ›› 2012, Vol. 32 ›› Issue (9): 1620-1632.DOI: 10.6023/cjoc201203012 上一篇    下一篇

综述与进展

聚集诱导发光应用研究进展

赵国生a,b, 史川兴a, 郭志前a, 朱为宏a, 朱世琴a,c   

  1. a 华东理工大学精细化工研究所 上海市功能性材料化学重点实验室 上海 200237;
    b 浙江闰土股份有限公司 上虞 312368;
    c 华东理工大学科技信息研究所 上海 200237
  • 收稿日期:2012-03-27 修回日期:2012-05-04 发布日期:2012-04-24
  • 通讯作者: 朱世琴 E-mail:shqzhu@ecust.edu.cn
  • 基金资助:

    国家自然科学基金(No.61077085)资助项目

Recent Application Progress on Aggregation-Induced Emission

Zhao Guoshenga,b, Shi Chuanxinga, Guo Zhiqiana, Zhu Weihonga, Zhu Shiqina,c   

  1. a Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237;
    b Zhejiang Runtu Co. Ltd, Shangyu 312368;
    c Institute of Science and Technology Information, East China University of Science & Technology, Shanghai 200237
  • Received:2012-03-27 Revised:2012-05-04 Published:2012-04-24
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No.61077085)

传统的荧光化合物在聚集态时,会导致荧光猝灭;而聚集诱导发光(AIE)化合物在溶液中单分子状态时呈现弱的荧光,但当形成聚集态时发出强的荧光,这是由于分子内旋转受阻(RIR)和聚集形态的改变所致.综述了2008年以来聚集诱导发光最新应用研究进展,如用以检测离子、气体、有机小分子、爆炸物、蛋白、酶等化学/生物传感器;向传统的聚集引起猝灭化合物引入AIE单元,制备高效固态发光器件等;通过压力、热、溶剂蒸汽等调控聚集态,构建可逆的刺激性多重响应材料;发展与生物体具有良好兼容性的聚集体杂化纳米颗粒(如荧光硅纳米颗粒、聚合物胶束、电解质等),以用于生物体内成像、结构解析及检测等.

关键词: 聚集诱导发光, 分子内旋转, 传感器, 固态发光, 聚集形态, 细胞成像

Luminescence of conventional fluorophores often becomes weakened or quenched at high concentration or solid state. In contrast, some are non-luminescent in solution but highly emissive in the aggregate or solid state, so called “aggregation-induced emission (AIE)”, which might be resulted from the restriction of intramolecular rotation (RIR) and changes in aggregate morphology. Herein, the latest progress on AIE since 2008 is reviewed, such as: (i) developing chemo-or bio-sensors for detecting ions, gas, small molecules, explosives, proteins, enzymes and so on; (ii) incorporating the AIE unit to realize highly luminescent solid emitters, especially for OLEDs (organic light-emitting diodes); (iii) tuning the aggregation morphology to construct reversible multi-responsive materials stimulated by pressure, heat or solvent vapor; (iv) due to the biocompatibility of aggregate nanoparticles, developing hybrid materials including fluorescent silica nanoparticles, polymeric micelles and electrolytes for applications in cell imaging, structure analysis and bioassay.

Key words: aggregation-induced emission, intramolecular rotation, sensor, solid emitter, aggregation morphology, cell imaging