[1] For reviews, see: (a) Jensen, B. S. CNS Drug Rev. 2002, 8, 353. (b) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748. (c) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104. (d) Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. 2011, 133, 20611. (e) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
[2] For reviews, see: (a) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578. (b) Mu, X.; Wu, T.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.
[3] For Ag-catalyzed radical cascade synthesis of oxindoles, see: (a) Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972. (b) Wang, H.; Guo, L.-N.; Duan, X.-H. Adv. Synth. Catal. 2013, 355, 2222. (c) Yuan, Y. Z.; Shen, T.; Wang, K.; Jiao, N. Chem. Asian J. 2013, 8, 2932. (d) Li, Y.-N.; Wang, J.-J.; Wei, X.-H.; Yang, S.-D. Chin. J. Org. Chem. 2015, 35, 638 (in Chinese). (李永红, 王君姣, 魏小红, 杨尚东, 有机化学, 2015, 35, 638.) For Cu-catalyzed radical cascade synthesis of oxindoles, see: (e) Li, Z.-J.; Zhang, Y.; Zhang, L.-Z.; Liu, Z.-Q. Org. Lett. 2014, 16, 382. (f) Li, J.; Wang, Z.-G.; Wu, N.-J.; Gao, G.; You, J.-S. Chem. Commun. 2014, 50, 15049. (g) Xu, Z.-B.; Yan, C.-X.; Liu, Z.-Q. Org. Lett. 2014, 16, 5670. For Fe-catalyzed radical cascade synthesis of oxindoles, see: (h) Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H. Angew. Chem., Int. Ed. 2013, 52, 3638. (i) Lu, M.-Z.; Loh, T.-P. Org. Lett. 2014, 16, 4698. (j) Shen, T.; Yuan, Y.; Song, S.; Jiao, N. Chem. Commun. 2014, 50, 4115. For Mn-catalyzed radical cascade synthesis of oxindoles, see: (k) Li, X.-Q.; Xu, J.; Gao, Y.-Z.; Fang, H.; Tang, G.; Zhao, Y.-F. J. Org. Chem. 2015, 80, 2621.
[4] For the metal-free oxidative difunctionalization of alkenes leading to oxindoles via a radical process, see: (a) Wu, T.; Zhang, H.; Liu, G. Tetrahedron 2012, 68, 5229. (b) Zhou, M.-B.; Song, R.-J.; Ouyang, X.-H.; Liu, Y.; Wei, W.-T.; Deng, G.-B.; Li, J.-H. Chem. Sci. 2013, 4, 2690. (c) Meng, Y.; Guo, L.-N.; Wang, H.; Duan, X.-H. Chem. Commun. 2013, 49, 7540. (d) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985. (e) Li, X.; Xu, X.; Hu, P.; Xiao, X.; Zhou, C. J. Org. Chem. 2013, 78, 7343. (f ) Shen, T.; Yuan Y.-Z.; Jiao, N. Chem. Commun. 2014, 50, 554. (g) Li, Y. M.; Shen, Y. H.; Chang, K. J.; Yang, S. D. Tetrahedron 2014, 70, 1991.
[5] (a) Dneprovskii, A. S.; Kasatochkin, A. N.; Boyarskii, V. P.; Ermoshkin, A. A.; Yakovlev, A. A. Russ. J. Org. Chem. 2006, 42, 1120. (b) Ashby, E. C.; Coleman, D. J. Org. Chem. 1987, 52, 4554.
[6] Tian, Y.-F., Liu, Z.-Q. RSC Adv. 2014, 4, 64855.
[7] Liu, Y.; Zhang, J. L.; Song, R. J.; Li, J. H. Org. Chem. Front. 2014, 1, 1289.
[8] (a) A. Pinto, Y. Jia, L. Neuville, J. Zhu, Chem. Eur. J. 2007, 13, 961. (b) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672. (c) Ayitou, A. A.-L.; Sivaguru, J. Chem. Commun. 2011, 47, 2568. |