有机化学 ›› 2021, Vol. 41 ›› Issue (2): 611-623.DOI: 10.6023/cjoc202006046 上一篇 下一篇
综述与进展
收稿日期:
2020-06-23
修回日期:
2020-07-27
发布日期:
2020-08-19
通讯作者:
陈杜刚
作者简介:
基金资助:
Li Chena, Junbo Lib, Dugang Chena,*()
Received:
2020-06-23
Revised:
2020-07-27
Published:
2020-08-19
Contact:
Dugang Chen
Supported by:
文章分享
生物硫醇(包含半胱氨酸、高半胱氨酸和谷胱甘肽)在生命活动中扮演了重要的角色, 其浓度的异常变化与某些疾病息息相关, 因此对硫醇的检测具有重要意义. 荧光探针因具有灵敏度高、时空分辨率好、无损伤、可视化等优势, 在生物硫醇的检测方面得到了高度重视. 利用硫醇在分子结构上的共同点(含巯基的氨基酸)和差异(分子大小、亲核性、空间位阻、细胞内含量), 可通过迈克尔加成、亲核芳基取代、加成环化等反应实现对硫醇的选择性检测. 综述了近3年来硫醇荧光探针领域的研究进展. 首先介绍了对硫醇有选择性识别的荧光探针, 随后分类讨论了对半胱氨酸、高半胱氨酸和谷胱甘肽各具有特异性检测的荧光探针, 并重点介绍了分子设计、识别机理、荧光性质和成像应用, 初步探讨了部分探针在监测细胞生命活动中的作用, 同时还对本领域的发展提出了展望.
陈莉, 黎俊波, 陈杜刚. 生物硫醇荧光探针的研究进展[J]. 有机化学, 2021, 41(2): 611-623.
Li Chen, Junbo Li, Dugang Chen. Recent Advances in Fluorescent Probes for Biothiols[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 611-623.
[1] |
Zhang W.; Liu J.; Yu Y.; Han Q.; Cheng T.; Shen J.; Wang B.; Jiang Y. Talanta 2018, 185, 477.
doi: S0039-9140(18)30350-3 pmid: 29759230 |
[2] |
Abbasi-Moayed S.; Golmohammadi H.; Bigdeli A.; Hormozi- Nezhad, M.R.Analyst 2018, 143, 3415.
doi: 10.1039/c8an00637g pmid: 29915832 |
[3] |
Chen D.; Yang J.; Dai J.; Lou X.; Zhong C.; Yu X.; Xia F. J. Mater. Chem. B 2018, 6, 5248.
doi: 10.1039/C8TB01340C |
[4] |
Alberti G.; Nurchi V.M.; Magnaghi L.R.; Biesuz R. Anal. Methods 2019, 11, 4464.
doi: 10.1039/C9AY01538H |
[5] |
Yang Y.; Wang Y.; Feng Y.; Cao C.; Song X.; Zhang G.; Liu W. J. Mater. Chem. B 2019, 7, 7723.
doi: 10.1039/c9tb01645g pmid: 31746929 |
[6] |
Zhan C.; Zhang G.; Zhang D. ACS Appl. Mater. Interfaces 2017, 10, 12141.
doi: 10.1021/acsami.7b14446 |
[7] |
Jiao S.; He X.; Xu L.; Ma P.; Liu C.; Huang Y.; Sun Y.; Wang X.; Song D. Sens. Actuators, B 2019, 290, 47.
doi: 10.1016/j.snb.2019.03.119 |
[8] |
Li M.; Kang N.; Zhang C.; Liang W.; Zhang G.; Jia J.; Yao Q.; Shuang S.; Dong C. Spectrochim. Acta, Part A 2019, 222, 117262.
doi: 10.1016/j.saa.2019.117262 |
[9] |
Wu Q.; Mao M.; Liang W.; Stadler F.J. Talanta 2018, 186, 110.
doi: 10.1016/j.talanta.2018.04.044 |
[10] |
Yin C.X.; Xiong K.M.; Huo F.J.; Salamanca J.C.; Strongin R.M. Angew. Chem. Int. Ed. 2017, 56, 13188.
doi: 10.1002/anie.201704084 |
[11] |
Niu H.; Ni B.; Chen K.; Yang X.; Cao W.; Ye Y.; Zhao Y. Talanta 2019, 196, 145.
doi: 10.1016/j.talanta.2018.12.031 |
[12] |
Kim C.Y.; Kang H.J.; Chung S.J.; Kim H.K.; Na S.Y.; Kim H.J. Anal. Chem 2016, 88, 7178.
doi: 10.1021/acs.analchem.6b01346 |
[13] |
Wang H.; Zhang Y.; Yang Y.; He Z.; Wu C.; Zhang W.; Zhang W.; Liu J.; Li P.; Tang B. Chem. Commun. 2019, 55, 9685.
doi: 10.1039/c9cc03814k pmid: WOS:000479314800019 |
[14] |
Bai Z.; Yan F.; Xu J.; Zhang J.; Wei J.; Luo Y.; Chen L. Spectrochim. Acta, Part A 2018, 205, 29.
doi: 10.1016/j.saa.2018.07.012 |
[15] |
Yue Y.; Huo F.; Ning P.; Zhang Y.; Chao J.; Meng X.; Yin C. J. Am. Chem. Soc. 2017, 139, 3181.
doi: 10.1021/jacs.6b12845 |
[16] |
Yang M.W.; Fan J.L.; Sun W.; Du J.J.; Peng X.J. Anal. Chem. 2019, 19, 12531.
|
[17] |
Li M.; Zheng K.; Chen H.; Liu X.; Xiao S.; Yan J.; Tan X.; Zhang N. Spectrochim. Acta, Part A 2019, 217, 1.
doi: 10.1016/j.saa.2019.03.033 |
[18] |
Meng X.; Ye W.; Wang S.; Feng Y.; Chen M.; Zhu M.; Guo Q. Sens. Actuators, B 2014, 201, 520.
doi: 10.1016/j.snb.2014.05.042 |
[19] |
Zhang Q.; Cui Z.; Wang Q.; Zheng G. Sens. Actuators, B 2019, 295, 79.
doi: 10.1016/j.snb.2019.05.050 |
[20] |
Guo Z.B.; Zheng X.Y.; Li X.Y.; Jia Q.F.; Zhang P.Z.; Wei C.; Li X.L. Chin. J. Org. Chem. 2020, 40, 1239. (in Chinese)
doi: 10.6023/cjoc201911015 pmid: adb87a82-5458-4860-ac22-12c6f49cea23 |
郭振波, 郑雪阳, 李雪艳, 贾清菲, 张平竹, 魏超, 李小六, 有机化学, 2020, 40, 1239.).
doi: 10.6023/cjoc201911015 pmid: adb87a82-5458-4860-ac22-12c6f49cea23 |
|
[21] |
Chen D.; Zhong C.; Zhao Y.; Nan L.; Liu Y.; Qin J. J. Mater. Chem. C 2017, 5, 5199.
doi: 10.1039/C7TC01266G |
[22] |
Li D.-P.; Zhang J.-F.; Cui J.; Ma X.-F.; Liu J.-T.; Miao J.-Y.; Zhao B.-X. Sens. Actuators, B 2016, 234, 231.
doi: 10.1016/j.snb.2016.04.164 |
[23] |
Zhang Y.; Wang X.; Bai X.; Li P.; Su D.; Zhang W.; Zhang W.; Tang B. Anal. Chem. 2019, 91, 8591.
doi: 10.1021/acs.analchem.9b01878 pmid: WOS:000474477900082 |
[24] |
Dang Y.; Chen L.; Yuan L.; Li J.; Chen D. ChemistrySelect 2020, 5, 584.
doi: 10.1002/slct.v5.2 |
[25] |
Yan P.P.; Wang T.; Zhang D.; Ma X.X. Chin. J. Org. Chem. 2019, 39, 916. (in Chinese)
doi: 10.6023/cjoc201807055 pmid: 4EA8CF8B-4A38-43C3-B7DA-C7829EFBC4DE |
闫沛沛, 王婷, 张丹, 马晓雪, 有机化学, 2019, 39, 916.).
doi: 10.6023/cjoc201807055 pmid: 4EA8CF8B-4A38-43C3-B7DA-C7829EFBC4DE |
|
[26] |
Chen H.; Tang Y.; Lin W. Trends Anal. Chem. 2016, 76, 166.
doi: 10.1016/j.trac.2015.11.014 |
[27] |
Chao J.; Li M.; Liu Y.; Zhang Y.; Huo F.; Yin C. Sens. Actuators, B 2019, 298, 126844.
doi: 10.1016/j.snb.2019.126844 |
[28] |
Huang Y.; Mei J.; Ma X. Dyes Pigm. 2019, 165, 499.
doi: 10.1016/j.dyepig.2019.02.053 |
[29] |
Liu Z.; Zhou X.; Miao Y.; Hu Y.; Kwon N.; Wu X.; Yoon J. Angew. Chem. Int. Ed. 2017, 56, 5812.
doi: 10.1002/anie.201702114 |
[30] |
Yang T.; Niu D.; Chen J.; He J.; Yang S.; Jia X.; Hao J.; Zhao W.; Li Y. Biomater. Sci. 2019, 7, 2951.
doi: 10.1039/C9BM00342H |
[31] |
Wang L.; Wu S.; Tang H.; Meier H.; Cao D. Sens. Actuators, B 2018, 273, 1085.
doi: 10.1016/j.snb.2018.07.035 |
[32] |
Long Z.; Chen L.; Dang Y.; Chen D.; Lou X.; Xia F. Talanta 2019, 204, 762.
doi: S0039-9140(19)30689-7 pmid: 31357363 |
[33] |
Zhou T.T.; Yang Y.T.; Zhou K.Y.; Xu W.Z.; Li W. Chin. J. Org. Chem. 2019, 39, 3498. (in Chinese)
doi: 10.6023/cjoc201906004 pmid: CF0CF847-DAD7-49DE-A174-8F4420F122AC |
周婷婷, 杨瑜涛, 周柯岩, 胥稳智, 李玮, 有机化学, 2019, 39, 3498.).
doi: 10.6023/cjoc201906004 pmid: CF0CF847-DAD7-49DE-A174-8F4420F122AC |
|
[34] |
Nia N.N.; Hadjmohammadi M.R. Anal. Methods 2019, 11, 5134.
doi: 10.1039/C9AY01704F |
[35] |
Cao L.; Liang Q.; Wei T.; Shi Y.; Deng T.; Meng J. J. Chromatogr. A 2018, 1577, 47.
doi: 10.1016/j.chroma.2018.09.045 |
[36] |
Zhang Y.; Zhang Y.; Zhu L.; He P.; Wang Q. Anal. Methods 2019, 11, 1558.
doi: 10.1039/C9AY00067D |
[37] |
Otto P.; Bergmann S.; Sandmeyer A.; Dirksen M.; Wrede O.; Hellweg T.; Huser T. Nanoscale Adv. 2020.
|
[38] |
Zhang Y.N.; Niu Q.; Gu X.; Yang N.; Zhao G. Nanoscale 2019, 11, 11992.
doi: 10.1039/C9NR02935D |
[39] |
Hagemann L.T.; McCartney M.M.; Fung A.G.; Peirano D.J.; Davis C.E.; Mizaikoff B. Analyst 2018, 143, 5683.
doi: 10.1039/c8an01192c pmid: 30232480 |
[40] |
Jiang T.; Wang X.; Wang G.; Wang Y.F.; Wang K.; Xuan X.P.; Chen C.P.; Jiang K.; Zhang H. Chem. Commun. 2019, 55, 5279.
doi: 10.1039/c9cc01451a pmid: WOS:000468342700016 |
[41] |
Li R.; Huang X.; Lu G.; Feng C. RSC Adv. 2018, 8, 24346.
doi: 10.1039/C8RA03756F |
[42] |
Dai X.; Zhang T.; Miao J.-Y.; Zhao B.-X. Sens. Actuators, B 2016, 223, 274.
doi: 10.1016/j.snb.2015.09.106 |
[43] |
Ramachandran R.; Chen T.-W.; Chen S.-M.; Baskar T.; Kannan R.; Elumalai P.; Raja P.; Jeyapragasam T.; Dinakaran K.; Gnana kumar, G.p.Inorg. Chem. Front. 2019, 6, 3418.
doi: 10.1039/c9qi00602h pmid: WOS:000501285400003 |
[44] |
Chen K.; Han B.C.; Ji S.X.; Sun J.; Gao Z.Z.; Hou X.F. Acta Chim. Sinica 2019, 77, 365. (in Chinese)
doi: 10.6023/A18120484 pmid: 118C92A9-A3C6-4926-AAEC-57108F5BDE7E |
陈凯, 韩百川, 嵇思鑫, 孙瑾, 高振忠, 侯贤锋, 化学学报, 2019, 77, 365.).
doi: 10.6023/A18120484 pmid: 118C92A9-A3C6-4926-AAEC-57108F5BDE7E |
|
[45] |
Xie C.; Ma C.; Jia X.; Zhang X.Q.; Wei C.; Zhang P.Z.; Li X.L. Chin. J. Org. Chem. 2019, 39, 3277. (in Chinese)
doi: 10.6023/cjoc201905038 pmid: 9F52F4CD-C8A1-475C-A250-91D3656F32AF |
解畅, 马趁, 贾旭, 张学琪, 魏超, 张平竹, 李小六, 有机化学, 2019, 39, 3277.).
doi: 10.6023/cjoc201905038 pmid: 9F52F4CD-C8A1-475C-A250-91D3656F32AF |
|
[46] |
Liu H.; Zhu L.; Lou X.; Yuan L.; Zhang X. Acta Chim. Sinica 2020, 78, 1240. (in Chinese)
doi: 10.6023/A20070323 pmid: cf44715c-1211-4779-acd5-750e692c28f7 |
刘红文, 朱隆民, 娄霄峰, 袁林, 张晓兵, 化学学报, 2020, 78, 1240.).
doi: 10.6023/A20070323 pmid: cf44715c-1211-4779-acd5-750e692c28f7 |
|
[47] |
Zhang J.D.; Liu A.C.; Chen J.; Yuan G.H.; Jin H.F. Prog. Chem. 2020, 32, 594. (in Chinese)
pmid: 3B478391-5E6D-4D8C-AB10-286762CF128A |
张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰, 化学进展, 2020, 32, 594.).
doi: 10.7536/PC190819 pmid: 3B478391-5E6D-4D8C-AB10-286762CF128A |
|
[48] |
Liu Y.; Niu L.-Y.; Chen Y.-Z.; Yang Q.-Z. J. Photochem. Photobiol. A, Chem. 2018, 355, 311.
doi: 10.1016/j.jphotochem.2017.08.042 |
[49] |
Wang Y.; Huang C.S.; Jia N.Q. Prog. Chem. 2019, 32, 204. (in Chinese)
|
王阳, 黄楚森, 贾能勤, 化学进展, 2019, 32, 204.).
|
|
[50] |
Zhu D.; Yan X.; Ren A.; Xie W.; Duan Z. Anal. Chim. Acta 2019, 1058, 136.
doi: 10.1016/j.aca.2019.01.013 |
[51] |
Chen D.; Long Z.; Sun Y.; Luo Z.; Lou X. J. Photochem. Photobiol. A, Chem. 2019, 368, 90.
doi: 10.1016/j.jphotochem.2018.09.030 |
[52] |
Yang L.; Xiong H.; Su Y.; Tian H.; Liu X.; Song X. Chin. Chem. Lett. 2019, 30, 563.
doi: 10.1016/j.cclet.2018.12.017 |
[53] |
Du W.; Liu R.; Fang J.; Gao H.; Wang Y.; Peng Y. Tetrahedron 2019, 75, 130477.
doi: 10.1016/j.tet.2019.130477 |
[54] |
Huang Y.; Zhang Y.; Huo F.; Liu Y.; Yin C. Sens. Actuators, B 2019, 301, 127123.
doi: 10.1016/j.snb.2019.127123 |
[55] |
Luo J.; Xie Z.; Lam J. W. Y.; Cheng L.; Chen H.; Qiu C.; Kwok H.S.; Zhan X.; Liu Y.; Zhu D.; Tang B.Z. Chem. Commun. 2001, 18, 1740.
|
[56] |
Mei J.; Leung N. L. C.; Kwok R. T. K.; Lam J. W. Y.; Tang B.Z. Chem. Rev. 2015, 115, 11718.
doi: 10.1021/acs.chemrev.5b00263 |
[57] |
Dong F.; Lai H.; Liu Y.; Li Q.; Chen H.; Ji S.; Zhang J.; Huo Y. Talanta 2020, 206, 120177.
doi: 10.1016/j.talanta.2019.120177 |
[58] |
Das S.; Ghosh A.; Kundu S.; Saha S.; Sarkar H.S.; Sahoo P. Anal. Bioanal. Chem. 2019, 411, 6203.
doi: 10.1007/s00216-019-02012-9 |
[59] |
Huang Z.; Wu C.; Li Y.; Zhou Z.; Xie R.; Pang X.; Xu H.; Li H.; Zhang Y. Anal. Methods 2019, 11, 3280.
doi: 10.1039/C9AY00659A |
[60] |
Wang B.J.; Liu R.J.; Fang J.G.; Wang Y.W.; Peng Y. Chem. Commun. 2019, 55, 11762.
doi: 10.1039/C9CC06468K |
[61] |
Ning Z.W.; Wu S.Z.; Liu G.J.; Ji Y.M.; Jia L.Y.; Niu X.X.; Ma R.F.; Zhang Y.; Xing G.W. Chem. Asian J. 2019, 14, 2220.
doi: 10.1002/asia.v14.13 |
[62] |
Khatik G.L.; Kumar R.; Chakraborti A.K. Org. Lett. 2006, 8, 2433.
pmid: 16706544 |
[63] |
Lin W.; Yuan L.; Cao Z.; Feng Y.; Long L. Chem.- Eur. J. 2009, 15, 5096.
doi: 10.1002/chem.v15:20 |
[64] |
Zhou X.; Jin X.; Sun G.; Li D.; Wu X. Chem. Commun. 2012, 48, 8793.
doi: 10.1039/c2cc33971d |
[65] |
Zhao N.; Wu Y.H.; Shi L.X.; Lin Q.P.; Chen Z.N. Dalton Trans. 2010, 39, 8288.
doi: 10.1039/c0dt00456a pmid: 20694240 |
[66] |
Li Y.; Shi N.; Li M. New J. Chem. 2019, 43, 18517.
doi: 10.1039/C9NJ04426D |
[67] |
Chen X.; Xu H.; Ma S.; Tong H.; Lou K.; Wang W. RSC Adv. 2018, 8, 13388.
doi: 10.1039/C8RA02138D |
[68] |
Zhu M.; Wu X.; Sang L.; Fan F.; Wang L.; Wu X.; Hua R.; Wang Y.; Li Q.X. New J. Chem. 2019, 43, 13463.
doi: 10.1039/C9NJ03202A |
[69] |
Zhang P.; Xiao Y.; Zhang Q.; Zhang Z.; Yu H.; Ding C. New J. Chem. 2019, 43, 7620.
doi: 10.1039/c9nj01259a pmid: WOS:000472216200007 |
[70] |
Han C.; Song B.; Liang X.; Pan H.; Dong W. Anal. Methods 2019, 11, 2513.
doi: 10.1039/C9AY00708C |
[71] |
Wu Y.; Shi A.; Zeng H.; Li Y.; Li H.; Chen X.; Wong W.-Y.; Fan X. Dyes Pigm. 2019, 170, 107563.
doi: 10.1016/j.dyepig.2019.107563 |
[72] |
Lu Z.; Lu Y.; Fan C.; Sun X.; Shao W.; Jiang N.; Gong X.; Lu Y.; Sun G.; Jiang X. Sens. Actuators, B 2019, 290, 581.
doi: 10.1016/j.snb.2019.04.018 |
[73] |
Zhang S.; Wu D.; Wu J.; Xia Q.; Jia X.; Song X.; Zeng L.; Yuan Y. Talanta 2019, 204, 747.
doi: 10.1016/j.talanta.2019.06.074 |
[74] |
Yu Y.; Xu H.; Zhang W.; Han Q.; Wang B.; Jiang Y. J. Photochem. Photobiol. A, Chem 2017, 346, 215.
doi: 10.1016/j.jphotochem.2017.06.001 |
[75] |
Dai Y.; Xue T.; Zhang X.; Misal S.; Ji H.; Qi Z. Spectrochim. Acta, Part A 2019, 216, 365.
doi: 10.1016/j.saa.2019.03.055 |
[76] |
Liu D.; Lv Y.; Chen M.; Cheng D.; Song Z.; Yuan L.; Zhang X. J. Mater. Chem. B 2019, 7, 3970.
doi: 10.1039/C9TB00652D |
[77] |
Chen D.; Long Z.; Dang Y.; Chen L. Dyes Pigm. 2019, 166, 266.
doi: 10.1016/j.dyepig.2019.03.051 |
[78] |
Liang B.; Wang B.; Ma Q.; Xie C.; Li X.; Wang S. Spectrochim. Acta, Part A 2018, 192, 67.
doi: 10.1016/j.saa.2017.10.044 |
[79] |
Bai Y.; Wu M.-X.; Ma Q.-J.; Wang C.-Y.; Sun J.-G.; Tian M.-J.; Li J.-S. New J. Chem. 2019, 43, 14763.
doi: 10.1039/c9nj03375k pmid: WOS:000487373300013 |
[80] |
Kang Y.-F.; Niu L.-Y.; Yang Q.-Z. Chin. Chem. Lett. 2019, 30, 1791.
doi: 10.1016/j.cclet.2019.08.013 |
[81] |
Yang Y.; Wang H.; Wei Y.-L.; Zhou J.; Zhang J.-F.; Zhou Y. Chin. Chem. Lett. 2017, 28, 2023.
doi: 10.1016/j.cclet.2017.08.051 |
[82] |
Liu J.; Liu M.; Zhang H.; Wei X.; Wang J.; Xian M.; Guo W. Chem. Sci. 2019, 10, 10065.
doi: 10.1039/C9SC02618E |
[83] |
Chen X.; Wang F.; Hyun J.Y.; Wei T.; Qiang J.; Ren X.; Shin I.; Yoon J. Chem. Soc. Rev. 2016, 45, 2976.
doi: 10.1039/C6CS00192K |
[84] |
Wang K.; Xu S.; Lei Y.; Zheng W.; Zhang Q.; Chen S.; Hu H.; Hu Z. Talanta 2019, 196, 243.
doi: 10.1016/j.talanta.2018.12.060 |
[85] |
Wang Y.W.; Liu S.B.; Ling W.J.; Peng Y. Chem. Commun. 2016, 52, 827.
doi: 10.1039/C5CC07886E |
[86] |
Chu Y.; Xie Z.; Zhuang D.; Yue Y.; Yue Y.; Shi W.; Feng S. Chin. J. Chem. 2019, 37, 1216.
doi: 10.1002/cjoc.v37.12 |
[87] |
Wang C.; Xia X.; Luo J.; Qian Y. Dyes Pigm. 2018, 152, 85.
doi: 10.1016/j.dyepig.2018.01.034 |
[88] |
Jiang X.; Chen J.; Bajic A.; Zhang C.; Song X.; Carroll S.L.; Cai Z.L.; Tang M.; Xue M.; Cheng N.; Schaaf C.P.; Li F.; MacKenzie K.R.; Ferreon A. C. M.; Xia F.; Wang M.C.; Maletic-Savatic M.; Wang J. Nat. Commun. 2017, 8, 16087.
doi: 10.1038/ncomms16087 |
[89] |
Ren M.; Wang L.; Lv X.; Sun Y.; Chen H.; Zhang K.; Wu Q.; Bai Y.; Guo W. Analyst 2019, 144, 7457.
doi: 10.1039/C9AN01852B |
[90] |
Xu Y.; Li R.; Zhou X.; Li W.; Ernest U.; Wan H.; Li L.; Chen H.; Yuan Z. Talanta 2019, 205, 120125.
doi: 10.1016/j.talanta.2019.120125 |
[91] |
Xu Z.; Huang X.; Han X.; Wu D.; Zhang B.; Tan Y.; Cao M.; Liu S.H.; Yin J.; Yoon J. Chem. 2018, 4, 1609.
doi: 10.1016/j.chempr.2018.04.003 |
[92] |
Xu Z.; Zhang M.-X.; Xu Y.; Liu S.H.; Zeng L.; Chen H.; Yin J. Sens. Actuators, B 2019, 290, 676.
doi: 10.1016/j.snb.2019.03.114 |
[93] |
Gong D.; Ru J.; Cao T.; Qian J.; Liu W.; Iqbal A.; Liu W.; Qin W.; Guo H. Sens. Actuators, B 2018, 258, 72.
doi: 10.1016/j.snb.2017.11.092 |
[94] |
Gu Y.; Zhao Z.; Niu G.; Zhang R.; Zhang H.; Shan G.-G.; Feng H.-T.; Kwok R. T. K.; Lam J. W. Y.; Yu X.; Tang B.Z. ACS Appl. Bio Mater. 2019, 2, 3120.
doi: 10.1021/acsabm.9b00447 |
[1] | 佘春艳, 王安静, 刘珊, 舒文明, 余维初. 芳乙酰叠氮的制备及其在有机合成中的应用进展[J]. 有机化学, 2024, 44(2): 481-507. |
[2] | 张莹珍, 江丹丹, 李娟华, 王菁菁, 刘昆明, 刘晋彪. 高选择性硒代半胱氨酸荧光探针的构建策略及成像[J]. 有机化学, 2024, 44(1): 41-53. |
[3] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[4] | 贾小英, 普佳霞, 韩丽荣, 李清寒. 含双杂原子苯并[d]五元杂环硫醚类化合物的合成研究进展[J]. 有机化学, 2024, 44(1): 18-40. |
[5] | 李焕清, 陈兆华, 陈祖佳, 邱琪雯, 张又才, 陈思鸿, 汪朝阳. 基于有机小分子的汞离子荧光探针研究进展[J]. 有机化学, 2023, 43(9): 3067-3077. |
[6] | 丁炳辉, 韩少辉, 熊海青, 王本花, 左伯军, 宋相志. 高选择性比率型荧光探针用于急性肺损伤中次氯酸的检测[J]. 有机化学, 2023, 43(8): 2878-2884. |
[7] | 普佳霞, 贾小英, 韩丽荣, 李清寒. 可见光诱导C—N键断裂构建C—C键的研究进展[J]. 有机化学, 2023, 43(8): 2591-2613. |
[8] | 石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺. 室温下酯与伯硫醇的硫酯化反应[J]. 有机化学, 2023, 43(7): 2499-2505. |
[9] | 李宜芳, 王耀, 牛华伟, 陈秀金, 李兆周, 王永国. 线粒体靶向的二氧化硫荧光探针研究进展[J]. 有机化学, 2023, 43(6): 1952-1962. |
[10] | 刘甜甜, 张鸿鹏, 焦晓梦, 白银娟. 多信号同时检测生物硫醇荧光探针的研究进展[J]. 有机化学, 2023, 43(6): 2081-2095. |
[11] | 刘飞冉, 敬静, 张小玲. 细胞器靶向型半胱氨酸荧光探针研究进展[J]. 有机化学, 2023, 43(6): 2053-2067. |
[12] | 陆祖嘉, 秦涧, 吴金婷, 曹文丽, 匡保龙, 张建国. 1,2,3-三唑类含能化合物的合成研究进展[J]. 有机化学, 2023, 43(2): 526-554. |
[13] | 陈志华, 胡艳, 马丽丽, 张子怡, 刘传祥. 基于氢化吡啶辅助氨基氧化策略的次氯酸根荧光探针的设计、合成及其性能研究[J]. 有机化学, 2023, 43(2): 718-724. |
[14] | 唐宏伟, 王超, 钟克利, 侯淑华, 汤立军, 边延江. 一种裸眼和荧光双通道快速检测Hg2+的探针及其多种应用[J]. 有机化学, 2023, 43(2): 712-717. |
[15] | 王粉, 王兰婷, 王罡, 钱程, 周映霞, 郑昕. 有机盐发光材料研究进展[J]. 有机化学, 2023, 43(12): 4147-4156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||