有机化学 ›› 2021, Vol. 41 ›› Issue (2): 624-641.DOI: 10.6023/cjoc202005070 上一篇 下一篇
综述与进展
邓汉林a, 罗贤升a, 李志华b, 赵江颖b, 黄木华a,*()
收稿日期:
2020-05-26
修回日期:
2020-07-09
发布日期:
2020-09-09
通讯作者:
黄木华
作者简介:
基金资助:
Hanlin Denga, Xiansheng Luoa, Zhihua Lib, Jiangying Zhaob, Muhua Huanga,*()
Received:
2020-05-26
Revised:
2020-07-09
Published:
2020-09-09
Contact:
Muhua Huang
Supported by:
文章分享
有机多孔材料凭借其高比表面积、孔道可调性、易功能化修饰和结构多样性等特征, 在催化、能源、吸附与分离等多个领域中展现了巨大应用潜力. 对多官能度有机化合物单体以及高效聚合反应的巧妙应用, 为新型有机多孔材料的创制提供了强有力的工具, 成为该领域的研究热点. 以C3对称型的间苯三酚及其衍生物为例, 综述了其在一系列新型有机多孔材料高效构筑中的最新研究进展.
邓汉林, 罗贤升, 李志华, 赵江颖, 黄木华. 基于间苯三酚及其衍生物构筑新型有机多孔材料[J]. 有机化学, 2021, 41(2): 624-641.
Hanlin Deng, Xiansheng Luo, Zhihua Li, Jiangying Zhao, Muhua Huang. Synthesis of Novel Porous Organic Materials Based on Phloroglucinol and Its Derivatives[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 624-641.
Entry | Polymer | SBET/(m2?g–1) | Mean pore size/nm | Vtot/(g?cm–3) |
---|---|---|---|---|
1[ | CE-P2 | 195 | 3.39 | 0.198 |
2[ | CTF-IP10 | 358 | — | 0.22 |
3[ | COP-36 | 11 | — | 0.032 |
4[ | Si(OAc)4-based | 990 | 3.51 | 0.84 |
5[ | HSi(OAc)3-based | 933 | 5.99 | 1.36 |
6[ | MeSi(OAc)3-based | 455 | 2.73 | 0.285 |
7[ | BoxPOP-1 | 231 | — | 0.98 |
8[ | BoxPOP-2 | 225 | — | 0.74 |
9[ | BoxPOP-3 | 46 | — | 0.17 |
10[ | CPF-T | 654 | — | 0.33 |
Entry | Polymer | SBET/(m2?g–1) | Mean pore size/nm | Vtot/(g?cm–3) |
---|---|---|---|---|
1[ | CE-P2 | 195 | 3.39 | 0.198 |
2[ | CTF-IP10 | 358 | — | 0.22 |
3[ | COP-36 | 11 | — | 0.032 |
4[ | Si(OAc)4-based | 990 | 3.51 | 0.84 |
5[ | HSi(OAc)3-based | 933 | 5.99 | 1.36 |
6[ | MeSi(OAc)3-based | 455 | 2.73 | 0.285 |
7[ | BoxPOP-1 | 231 | — | 0.98 |
8[ | BoxPOP-2 | 225 | — | 0.74 |
9[ | BoxPOP-3 | 46 | — | 0.17 |
10[ | CPF-T | 654 | — | 0.33 |
Entry | Polymer | SBET/(m2?g–1) | Mean pore size/nm | Vtot/(g?cm–3) |
---|---|---|---|---|
1[ | POF1B, POF1A | 917, 773 | 0.6 | — |
2[ | POF2B, POF2A | 769, 658 | 0.6 | — |
3[ | POF3B, POF3A | 608, 115 | 0.6, — | — |
4[ | MesoPOF-1 | 1027 | — | 0.86 |
5[ | PRP-1 | 835 | — | — |
6[ | POF-1S | 29 | — | — |
7[ | PTF-Cr | 106 | — | — |
8[ | PTF-Mg | 128 | — | — |
9[ | POF-1ES | 57 | — | — |
10[ | HROP | 568 | — | 0.80 |
Entry | Polymer | SBET/(m2?g–1) | Mean pore size/nm | Vtot/(g?cm–3) |
---|---|---|---|---|
1[ | POF1B, POF1A | 917, 773 | 0.6 | — |
2[ | POF2B, POF2A | 769, 658 | 0.6 | — |
3[ | POF3B, POF3A | 608, 115 | 0.6, — | — |
4[ | MesoPOF-1 | 1027 | — | 0.86 |
5[ | PRP-1 | 835 | — | — |
6[ | POF-1S | 29 | — | — |
7[ | PTF-Cr | 106 | — | — |
8[ | PTF-Mg | 128 | — | — |
9[ | POF-1ES | 57 | — | — |
10[ | HROP | 568 | — | 0.80 |
Entry | Polymer | SBET/(m2?g–1) | Mean pore size/nm | Vtot/(g?cm–3) |
---|---|---|---|---|
1[ | HAzo-POP-1 | 256 | — | 1.325 |
2[ | HAzo-POP-3 | 418 | — | 1.730 |
3[ | CoⅡ-NDI-PG, NDI-PG | 88, 93 | — | — |
4[ | Ag@AzoTPE-CMP, AzoTPE-CMP | 47, 366 | — | 0.110, 1.072 |
5[ | TAP1 | 474 | — | 0.74 |
6[ | TAP2 | 772 | — | 1.41 |
7[ | TAP3 | 729 | — | 1.04 |
8[ | TKH-POP-2 | 437 | — | 1.4 |
9[ | TKH-POP-3 | 552 | — | 2.3 |
10[ | TKH-POP-4 | 639 | — | 2.2 |
Entry | Polymer | SBET/(m2?g–1) | Mean pore size/nm | Vtot/(g?cm–3) |
---|---|---|---|---|
1[ | HAzo-POP-1 | 256 | — | 1.325 |
2[ | HAzo-POP-3 | 418 | — | 1.730 |
3[ | CoⅡ-NDI-PG, NDI-PG | 88, 93 | — | — |
4[ | Ag@AzoTPE-CMP, AzoTPE-CMP | 47, 366 | — | 0.110, 1.072 |
5[ | TAP1 | 474 | — | 0.74 |
6[ | TAP2 | 772 | — | 1.41 |
7[ | TAP3 | 729 | — | 1.04 |
8[ | TKH-POP-2 | 437 | — | 1.4 |
9[ | TKH-POP-3 | 552 | — | 2.3 |
10[ | TKH-POP-4 | 639 | — | 2.2 |
Entry | Polymer | SBET/ (m2?g–1) | Mean pore size/nm | Vtot/ (g?cm–3) |
---|---|---|---|---|
1[ | PAF-18 PAF-18-OLi | 1121 982 | 1.33 1.32 | 0.82 0.70 |
2[ | PAF-34-OH | 771 | — | — |
3[ | PAF-80 | 768 | — | — |
4[ | TpPAM | 654 | 1.6 | 0.23 |
5[ | TPDA-1 | 545 | — | 0.255 |
6[ | TrzPOP-3 | 772 | — | — |
7[ | SNP-BTT-1 | 698 | — | — |
8[ | SNP-BTT-2 | 411 | — | — |
9[ | Azo-POP-4 | 368 | 25.7 | 1.809 |
10[ | Azo-POP-5 | 196 | 38.2 | 1.784 |
11[ | Azo-POP-6 | 210 | 35.0 | 1.776 |
Entry | Polymer | SBET/ (m2?g–1) | Mean pore size/nm | Vtot/ (g?cm–3) |
---|---|---|---|---|
1[ | PAF-18 PAF-18-OLi | 1121 982 | 1.33 1.32 | 0.82 0.70 |
2[ | PAF-34-OH | 771 | — | — |
3[ | PAF-80 | 768 | — | — |
4[ | TpPAM | 654 | 1.6 | 0.23 |
5[ | TPDA-1 | 545 | — | 0.255 |
6[ | TrzPOP-3 | 772 | — | — |
7[ | SNP-BTT-1 | 698 | — | — |
8[ | SNP-BTT-2 | 411 | — | — |
9[ | Azo-POP-4 | 368 | 25.7 | 1.809 |
10[ | Azo-POP-5 | 196 | 38.2 | 1.784 |
11[ | Azo-POP-6 | 210 | 35.0 | 1.776 |
[1] |
Sanna C.; Scognamiglio M.; Fiorentino A.; Corona A.; Graziani V.; Caredda A.; Cortis P.; Montisci M.; Ceresola E.R.; Canducci F.; Poli F.; Tramontano E.; Esposito F. PLoS One 2018, 13, e195168.
|
[2] |
Broadley K.; Larsen L.; Herst P.M.; Smith R. A. J.; Berridge M.V.; Mcconnell M.J. J. Cell Biochem. 2011, 112, 1869.
doi: 10.1002/jcb.23107 |
[3] |
Zhang B.X.; Duan D.Z.; Ge C.P.; Yao J.P.; Liu Y.P.; Li X.M.; Fang J.G. J. Med. Chem. 2015, 58, 1795.
doi: 10.1021/jm5016507 |
[4] |
Bellamy A.J.; Ward S.J.; Golding P. Propellants, Explos., Pyrotech. 2002, 27, 49.
doi: 10.1002/1521-4087(200204)27:2【-逻*辑*与-】amp;lt;49::AID-PREP49【-逻*辑*与-】amp;gt;3.0.CO;2-4 |
[5] |
Wurzenberger M. H. H.; Bissinger B. R. G.; Lommel M.; Gruhne M.S.; Szimhardt N.; Stierstorfer J. New J. Chem. 2019, 43, 18193.
doi: 10.1039/c9nj03937f pmid: WOS:000499476200033 |
[6] |
Liang C.D.; Dai S. J. Am. Chem. Soc. 2006, 128, 5316.
doi: 10.1021/ja060242k |
[7] |
Yuan F.L.; Yuan T.S.; Sui L.Z.; Wang Z.B.; Xi Z.F.; Li Y.C.; Li X.H.; Fan L.Z.; Tan Z.A.; Chen A.M.; Jin M.X.; Yang S.H. Nat. Commun. 2018, 9, 2249.
doi: 10.1038/s41467-018-04635-5 |
[8] |
Tsyurupa M.P.; Davankov V.A. React. Funct. Polym. 2002, 53, 193.
doi: 10.1016/S1381-5148(02)00173-6 |
[9] |
Wang S.; Song K.; Zhang C.; Shu Y.; Li T.; Tan B. J. Mater. Chem. A 2017, 5, 1509.
doi: 10.1039/C6TA08556C |
[10] |
Tan L.X.; Tan B.E. Chem. Soc. Rev. 2017, 46, 3322.
doi: 10.1039/C6CS00851H |
[11] |
Chen L.; Honsho Y.; Seki S.; Jiang D.L. J. Am. Chem. Soc. 2010, 132, 6742.
doi: 10.1021/ja100327h |
[12] |
Dawson R.; Adams D.J.; Cooper A.I. Chem. Sci. 2011, 2, 1173.
doi: 10.1039/c1sc00100k |
[13] |
Yuan K.; Guo-Wang P.; Hu T.; Shi L.; Zeng R.; Forster M.; Pichler T.; Chen Y.W.; Scherf U. Chem. Mater. 2015, 27, 7403.
doi: 10.1021/acs.chemmater.5b03290 |
[14] |
Budd P.M.; Msayib K.J.; Tattershall C.E.; Ghanem B.S.; Reynolds K.J.; Mckeown N.B.; Fritsch D. J. Membr. Sci. 2005, 251, 263.
doi: 10.1016/j.memsci.2005.01.009 |
[15] |
Rose I.; Bezzu C.G.; Carta M.; Comesana-Gandara B.; La- sseuguette E.; Ferrari M.C.; Bernardo P.; Clarizia G.; Fuoco A.; Jansen J.C.; Hart K.E.; Liyana-Arachchi T.P.; Colina C.M.; Mckeown N.B. Nat. Mater. 2017, 16, 932.
doi: 10.1038/nmat4939 pmid: 28759030 |
[16] |
Ben T.; Ren H.; Ma S.Q.; Cao D.P.; Lan J.H.; Jing X.F.; Wang W.C.; Xu J.; Deng F.; Simmons J.M.; Qiu S.L.; Zhu G.S. Angew. Chem., Int. Ed. 2009, 48, 9457, S9451.
doi: 10.1002/anie.200904637 |
[17] |
Ben T.; Qiu S.L. CrystEngComm 2013, 15, 17.
doi: 10.1039/C2CE25409C |
[18] |
Jiang L.C.; Tian Y.Y.; Sun T.; Zhu Y.L.; Ren H.; Zou X.Q.; Ma Y.H.; Meihaus K.R.; Long J.R.; Zhu G.S. J. Am. Chem. Soc. 2018, 140, 15724.
doi: 10.1021/jacs.8b08174 |
[19] |
Hei Z.; Huang M.; Luo Y.; Wang Y. Polym. Chem. 2016, 7, 770.
doi: 10.1039/C5PY01682G |
[20] |
Fu H.X.; Zhang Z.H.; Fan W.H.; Wang S.F.; Liu Y.; Huang M.H. J. Mater. Chem. A 2019, 7, 15048.
doi: 10.1039/C9TA04594E |
[21] |
Chen Q.; Luo M.; Hammershoej P.; Zhou D.; Han Y.; Laursen B.W.; Yan C.G.; Han B.H. J. Am. Chem. Soc. 2012, 134, 6084.
doi: 10.1021/ja300438w |
[22] |
Liu X.X.; Luo X.S.; Fu H.X.; Fan W.H.; Chen S.L.; Huang M.H. Chem. Commun. 2020, 56, 2103.
doi: 10.1039/C9CC09710D |
[23] |
Cote A.P.; Benin A.I.; Ockwig N.W.; O'Keeffe M.; Matzger A.J.; Yaghi O.M. Science 2005, 310, 1166.
doi: 10.1126/science.1120411 |
[24] |
Yaghi O.M.; Li G.M.; Li H.L. Nature 1995, 378, 703.
doi: 10.1038/378703a0 |
[25] |
Kandambeth S.; Dey K.; Banerjee R. J. Am. Chem. Soc. 2019, 141, 1807.
doi: 10.1021/jacs.8b10334 pmid: WOS:000458348300002 |
[26] |
Kandambeth S.; Mallick A.; Lukose B.; Mane M.V.; Heine T.; Banerjee R. J. Am. Chem. Soc. 2012, 134, 19524.
doi: 10.1021/ja308278w |
[27] |
Chandra S.; Kandambeth S.; Biswal B.P.; Lukose B.; Kunjir S.M.; Chaudhary M.; Babarao R.; Heine T.; Banerjee R. J. Am. Chem. Soc. 2013, 135, 17853.
doi: 10.1021/ja408121p |
[28] |
Biswal B.P.; Chandra S.; Kandambeth S.; Lukose B.; Heine T.; Banerjee R. J. Am. Chem. Soc. 2013, 135, 5328.
doi: 10.1021/ja4017842 |
[29] |
Pachfule P.; Kandambeth S.; Diaz D.; Banerjee R. Chem. Commun. 2014, 50, 3169.
doi: 10.1039/C3CC49176E |
[30] |
Biswal B.P.; Kandambeth S.; Chandra S.; Shinde D.B.; Bera S.; Karak S.; Garai B.; Kharul U.K.; Banerjee R. J. Mater. Chem. A 2015, 3, 23664.
doi: 10.1039/C5TA07998E |
[31] |
Deblase C.R.; Silberstein K.E.; Truong T.; Abruña H.D.; Dichtel W.R. J. Am. Chem. Soc. 2013, 135, 16821.
doi: 10.1021/ja409421d |
[32] |
Deblase C.R.; Hernandez-Burgos K.; Silberstein K.E.; Rodriguez-Calero G.G.; Bisbey R.P.; Abruna H.D.; Dichtel W.R. ACS Nano. 2015, 9, 3178.
doi: 10.1021/acsnano.5b00184 |
[33] |
Mulzer C.R.; Shen L.X.; Bisbey R.P.; Mckone J.R.; Zhang N.; Abruna H.D.; Dichtel W.R. ACS Cent. Sci. 2016, 2, 667.
doi: 10.1021/acscentsci.6b00220 |
[34] |
Vitaku E.; Gannett C.N.; Carpenter K.L.; Shen L.X.; Abruna H.D.; Dichtel W.R. J. Am. Chem. Soc. 2020, 142, 16.
doi: 10.1021/jacs.9b08147 |
[35] |
Li Z.P.; Zhi Y.F.; Feng X.; Ding X.S.; Zou Y.C.; Liu X.M.; Mu Y. Chem.-Eur. J. 2015, 21, 12079.
doi: 10.1002/chem.v21.34 |
[36] |
Yang H.; Wu H.; Yao Z.Q.; Shi B.B.; Xu Z.; Cheng X.X.; Pan F.S.; Liu G.H.; Jiang Z.Y.; Cao X.Z. J. Mater. Chem. A 2018, 6, 583.
doi: 10.1039/C7TA09596A |
[37] |
Yang H.; Wu H.; Xu Z.; Mu B.W.; Lin Z.X.; Cheng X.X.; Liu G.H.; Pan F.S.; Cao X.Z.; Jiang Z.Y. J. Membr. Sci. 2018, 561, 79.
doi: 10.1016/j.memsci.2018.05.036 |
[38] |
Liu G.H.; Jiang Z.Y.; Yang H.; Li C.D.; Wang H.J.; Wang M.D.; Song Y.M.; Wu H.; Pan F.S. J. Membr. Sci. 2019, 572, 557.
doi: 10.1016/j.memsci.2018.11.040 |
[39] |
Wang M.D.; Pan F.S.; Yang H.; Cao Y.; Wang H.J.; Song Y.M.; Lu Z.; Sun M.Z.; Wu H.; Jiang Z.Y. J. Mater. Chem. A 2019, 7, 9912.
doi: 10.1039/C8TA11883C |
[40] |
Cantillo D.; Damm M.; Dallinger D.; Bauser M.; Berger M.; Kappe C.O. Org. Process Res. Dev. 2014, 18, 1360.
doi: 10.1021/op5001435 |
[41] |
Seo J.M.; Noh H.; Jeong H.Y.; Baek J.B. J. Am. Chem. Soc. 2019, 141, 11786.
doi: 10.1021/jacs.9b05244 |
[42] |
Mahmood J.; Lee E.K.; Jung M.; Shin D.; Jeon I.Y.; Jung S.M.; Choi H.J.; Seo J.M.; Bae S.Y.; Sohn S.D.; Park N.; Oh J.H.; Shin H.J.; Baek J.B. Nat. Commun. 2015, 6, 6486.
doi: 10.1038/ncomms7486 pmid: 25744355 |
[43] |
Mahmood J.; Jung S.; Kim S.; Park J.; Yoo J.; Baek J. Chem. Mater. 2015, 27, 4860.
doi: 10.1021/acs.chemmater.5b01734 |
[44] |
Mahmood J.; Li F.; Jung S.M.; Okyay M.S.; Ahmad I.; Kim S.J.; Park N.; Jeong H.Y.; Baek J.B. Nat. Nanotechnol. 2017, 12, 441.
doi: 10.1038/nnano.2016.304 pmid: 28192390 |
[45] |
Mahmood J.; Li F.; Kim C.; Choi H.J.; Gwon O.; Jung S.M.; Seo J.M.; Cho S.J.; Ju Y.W.; Jeong H.Y.; Kim G.; Baek J.B. Nano Energy 2018, 44, 304.
doi: 10.1016/j.nanoen.2017.11.057 |
[46] |
Walczak R.; Kurpil B.; Savateev A.; Heil T.; Schmidt J.; Qin Q.; Antonietti M.; Oschatz M. Angew. Chem., Int. Ed. 2018, 57, 10765.
doi: 10.1002/anie.v57.33 |
[47] |
Shinde S.S.; Lee C.H.; Yu J.; Kim D.; Lee S.U.; Lee J. ACS Nano. 2018, 12, 596.
doi: 10.1021/acsnano.7b07473 |
[48] |
Li M.; Cui Z.; Pang S.; Meng L.; Ma D.; Li Y.; Shi Z.; Feng S. J. Mater. Chem. C 2019, 7, 11919.
|
[49] |
Ma J.X.; Li J.; Chen Y.F.; Ning R.; Ao Y.F.; Liu J.M.; Sun J.L.; Wang D.X.; Wang Q.Q. J. Am. Chem. Soc. 2019, 141, 3843.
doi: 10.1021/jacs.9b00665 |
[50] |
Yang Y.; He X.Y.; Zhang P.H.; Andaloussi Y.H.; Zhang H.L.; Jiang Z.Y.; Chen Y.; Ma S.Q.; Cheng P.; Zhang Z.J. Angew. Chem., Int. Ed. 2020, 59, 3678.
doi: 10.1002/anie.v59.9 |
[51] |
Abrahams B.F.; Egan S.J., Robson R. J. Am. Chem. Soc. 1999, 121, 3535.
doi: 10.1021/ja990016t |
[52] |
Hurd J.A.; Vaidhyanathan R.; Thangadurai V.; Ratcliffe C.I.; Moudrakovski I.L.; Shimizu G. K. H.Nat. Chem. 2009, 1, 705.
doi: 10.1038/nchem.402 |
[53] |
Kim S.R.; Dawson K.W.; Gelfand B.S.; Taylor J.M.; Shimizu G. K. H.J. Am. Chem. Soc. 2013, 135, 963.
doi: 10.1021/ja310675x |
[54] |
Yang R.; Li L.; Xiong Y.; Li J.; Zhou H.C.; Su C.Y. Chem.- Asian J. 2010, 5, 2358.
doi: 10.1002/asia.v5:11 |
[55] |
Zhao N.N.; Li W. J.; Sun C.Y.; Bian Y.Z.; Wang H.L.; Chang Z.D.; Fan H.X. Solid State Sci. 2012, 14, 317.
doi: 10.1016/j.solidstatesciences.2011.12.014 |
[56] |
Chaudhari A.K.; Nagarkar S.S.; Joarder B.; Ghosh S.K. Cryst. Growth Des. 2013, 13, 3716.
doi: 10.1021/cg400749m |
[57] |
Rimoldi M.; Nakamura A.; Vermeulen N.A.; Henkelis J.J.; Blackburn A.K.; Hupp J.T.; Stoddart J.F.; Farha O.K. Chem. Sci. 2016, 7, 4980.
doi: 10.1039/C6SC01376G |
[58] |
Hong S.; Rohman M.R.; Jia J.T.; Kim Y.; Moon D.; Kim Y.; Ko Y.H.; Lee E.; Kim K. Angew. Chem., Int. Ed. 2015, 54, 13241.
doi: 10.1002/anie.v54.45 |
[59] |
Chen Q.; Luo M.; Hammershoej P.; Zhou D.; Han Y.; Laursen B.W.; Yan C.G.; Han B.H. J. Am. Chem. Soc. 2012, 134, 6084.
doi: 10.1021/ja300438w |
[60] |
Zhou J.X.; Luo X.S.; Liu X.X.; Qiao Y.; Wang P.F.; Mecerreyes D.; Bogliotti N.; Chen S.L.; Huang M.H. J. Mater. Chem. A 2018, 6, 5608.
doi: 10.1039/C8TA00341F |
[61] |
Liu X.X.; Luo X.S.; Deng H.L.; Fan W.H.; Wang S.F.; Yang C.J.; Sun X.Y.; Chen S.L.; Huang M.H. Chem. Mater. 2019, 31, 5421.
doi: 10.1021/acs.chemmater.9b00590 |
[62] |
Yu H.; Shen C.J.; Wang Z.G. ChemPlusChem 2013, 78, 498.
doi: 10.1002/cplu.201300090 |
[63] |
Karmakar A.; Kumar A.; Chaudhari A.K.; Samanta P.; Desai A.V.; Krishna R.; Ghosh S.K. Chem.-Eur. J. 2016, 22, 4931.
doi: 10.1002/chem.201600109 |
[64] |
Wang L.; Jia J.T.; Faheem M.; Tian Y.Y.; Zhu G.S. J. Ind. Eng. Chem. 2018, 67, 373.
doi: 10.1016/j.jiec.2018.07.011 |
[65] |
Ullah R.; Atilhan M.; Anaya B.; Al-Muhtaseb S.; Aparicio S.; Patel H.; Thirion D.; Yavuz C.T. ACS Appl. Mater. Interfaces 2016, 8, 20772.
doi: 10.1021/acsami.6b05927 |
[66] |
Kejik M.; Moravec Z.; Barnes C.E.; Pinkas J. Microporous Mesoporous Mater. 2017, 240, 205.
doi: 10.1016/j.micromeso.2016.11.012 |
[67] |
Xu S.J.; He J.; Jin S.B.; Tan B.E. J. Colloid Interface Sci. 2018, 509, 457.
doi: 10.1016/j.jcis.2017.09.009 |
[68] |
Zhang M.C.; Li Y.; Bai C.Y.; Guo X.H.; Han J.; Hu S.; Jiang H.Q.; Tan W.; Li S.J.; Ma L.J. ACS Appl. Mater. Interfaces 2018, 10, 28936.
doi: 10.1021/acsami.8b06842 |
[69] |
Katsoulidis A.P.; Kanatzidis M.G. Chem. Mater. 2011, 23, 1818.
doi: 10.1021/cm103206x |
[70] |
Katsoulidis A.P.; Kanatzidis M.G. Chem. Mater. 2012, 24, 471.
doi: 10.1021/cm202578k |
[71] |
Ding M.L.; Jiang H.L. Chem. Commun. 2016, 52, 12294.
doi: 10.1039/C6CC07149J |
[72] |
Pareek K.; Rohan R.; Chen Z.; Zhao D.; Cheng H.S. Int. J. Hydrogen Energy 2017, 42, 6801.
doi: 10.1016/j.ijhydene.2017.01.209 |
[73] |
Kang D.W.; Lim K.S.; Lee K.J.; Lee J.H.; Lee W.R.; Song J.H.; Yeom K.H.; Kim J.Y.; Hong C.S. Angew. Chem., Int. Ed. 2016, 55, 16123.
doi: 10.1002/anie.201609049 |
[74] |
Kang D.W.; Song J.H.; Lee K.J.; Lee H.G.; Kim J.E.; Lee H.Y.; Kim J.Y.; Hong C.S. J. Mater. Chem. A 2017, 5, 17492.
doi: 10.1039/C7TA05279K |
[75] |
Kang D.W.; Lee K.A.; Kang M.; Kim J.M.; Moon M.; Choe J.H.; Kim H.; Kim D.W.; Kim J.Y.; Hong C.S. J. Mater. Chem. A 2020, 8, 1147.
doi: 10.1039/C9TA06807D |
[76] |
Chen T.T.; Tan H.L.; Chen Q.B.; Gu L.N..; Wei Z.S.; Liu H.L. ACS Appl. Mater. Interfaces 2019, 11, 48402.
doi: 10.1021/acsami.9b17657 |
[77] |
Ji G.P.; Yang Z.Z.; Zhang H.Y.; Zhao Y.F.; Yu B.; Ma Z.S.; Liu Z.M. Angew. Chem., Int. Ed. 2016, 55, 9685.
doi: 10.1002/anie.201602667 |
[78] |
Huang L.; He M.; Chen B.; Cheng Q.; Hu B. ACS Sustainable Chem. Eng. 2017, 5, 4050.
doi: 10.1021/acssuschemeng.7b00031 |
[79] |
Bhat S.A.; Das C.; Maji T.K. J. Mater. Chem. A 2018, 6, 19834.
doi: 10.1039/C8TA06588H |
[80] |
Liu M.; Yao C.; Liu C.; Xu Y. Sci. Rep. 2018, 8, 14072.
doi: 10.1038/s41598-018-32383-5 |
[81] |
Bera R.; Ansari M.; Alam A.; Das N. ACS Appl. Polym. Mater. 2019, 1, 959.
doi: 10.1021/acsapm.8b00264 |
[82] |
Vinodh R.; Abidov A.; Peng M.M.; Babu C.M.; Palanichamy M.; Cha W.S.; Jang H. J. Ind. Eng. Chem. 2015, 32, 273.
doi: 10.1016/j.jiec.2015.09.002 |
[83] |
Jiang K.; Zhao H.R.; Dai J.X.; Kuang D.; Fei T.; Zhang T. ACS Appl. Mater. Interfaces 2016, 8, 25529.
doi: 10.1021/acsami.6b08071 |
[84] |
Ma H.P.; Ren H.; Zou X.Q; Sun F.X.; Yan Z.J.; Cai K.; Wang D.Y.; Zhu G.S. J. Mater. Chem. A 2013, 1, 752.
doi: 10.1039/C2TA00616B |
[85] |
Yuan R.R.; Ren H.; Yan Z.J.; Wang A.F.; Zhu G.S. Polym. Chem. 2014, 5, 2266.
doi: 10.1039/c3py01252b |
[86] |
Shen X.S.; Faheem M.; Matsuo Y.; Aziz S.; Zhang X.; Li Y.H.; Song J.; Tian Y.Y.; Zhu G.S. J. Mater. Chem. A 2019, 7, 2507.
doi: 10.1039/C8TA11343B |
[87] |
Patra B.C.; Khilari S.; Manna R.N.; Mondal S.; Pradhan D.; Pradhan A.; Bhaumik A. ACS Catal. 2017, 7, 6120.
doi: 10.1021/acscatal.7b01067 |
[88] |
Bhanja P.; Das S.K.; Bhunia K.; Pradhan D.; Hayashi T.; Hijikata Y.; Irle S.; Bhaumik A. ACS Sustainable Chem. Eng. 2017, 6, 202.
doi: 10.1021/acssuschemeng.7b02234 |
[89] |
Das S.K.; Bhanja P.; Kundu S.K.; Mondal S.; Bhaumik A. ACS Appl. Mater. Interfaces 2018, 10, 23813.
doi: 10.1021/acsami.8b05849 |
[90] |
Kochergin Y.S.; Schwarz D.; Acharjya A.; Ichangi A.; Kulkarni R.; Eliášová P.; Vacek J.; Schmidt J.; Thomas A.; Bojdys M.J. Angew. Chem., Int. Ed. 2018, 57, 14188.
doi: 10.1002/anie.201809702 |
[91] |
Kochergin Y.S.; Noda Y.; Kulkarni R.; Akodáková K.; Tarábek J.; Schmidt J.; Bojdys M.J. Macromolecules 2019, 52, 7696.
doi: 10.1021/acs.macromol.9b01643 pmid: WOS:000492801000017 |
[1] | 白林盛, 洪鹏, 应安国. 功能化聚丙烯腈纤维促进有机反应的研究进展[J]. 有机化学, 2023, 43(4): 1241-1270. |
[2] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[3] | 刘斌凯, 滕坤旭, 牛丽亚, 杨清正. 氟硼二吡咯(BODIPY)荧光染料的合成研究进展[J]. 有机化学, 2022, 42(5): 1265-1285. |
[4] | 田晓京, 范禛禛, 姜思, 李志伟, 李江胜, 张跃飞, 卢翠红, 刘卫东. 无金属催化的双C—H功能化N-氰基苯并咪唑合成苯并咪唑并[1,2-c]喹唑啉衍生物[J]. 有机化学, 2022, 42(11): 3684-3692. |
[5] | 陈鑫, 陈春霞, 彭进松. 纤维素及其衍生物负载铜催化有机反应的研究进展[J]. 有机化学, 2021, 41(4): 1319-1336. |
[6] | 张露文, 何炜. 分子碘催化氧化C(sp3)—H功能化反应的研究进展[J]. 有机化学, 2021, 41(4): 1359-1395. |
[7] | 刘丽, 肖洪, 肖福红, 谢艳军, 黄华文, 邓国军. 亚磺酸钠盐和芳基乙酮/茚酮合成β-酮砜[J]. 有机化学, 2021, 41(12): 4749-4757. |
[8] | 李丹丹, 王晓辰, 李闪闪, 付晨雨, 李倩倩, 许东涛, 马莹莹. 电化学条件下喹喔啉-2(1H)-酮C(3)—H功能化的研究进展[J]. 有机化学, 2021, 41(12): 4610-4622. |
[9] | 王学颖, 盘伊琳, 郑昌武, 徐宏喜. 大叶藤黄醇的全合成研究[J]. 有机化学, 2021, 41(11): 4421-4427. |
[10] | 崔超慧, 刘玉婷, 杜亚. 三亚吡嗪材料能源应用研究进展[J]. 有机化学, 2021, 41(11): 4167-4179. |
[11] | 陈育萱, 陈奇, 张占辉. 共价有机框架材料作为非均相配体在有机合成中的应用[J]. 有机化学, 2021, 41(10): 3826-3843. |
[12] | 李鹏帅, 乌云, 白朝鲁门, 包永胜. 负载纳米钯颗粒在邻位导向磺化反应中的催化特性探究[J]. 有机化学, 2020, 40(7): 1991-1998. |
[13] | 董玮, 王欣, 葛泽梅, 和芳, 李润涛. 汉黄芩素的方便合成[J]. 有机化学, 2020, 40(6): 1725-1730. |
[14] | 于歌, 汪成. 共价有机框架在传感中的研究进展[J]. 有机化学, 2020, 40(6): 1437-1447. |
[15] | 董道青, 孙媛媛, 李光辉, 杨欢, 王祖利, 徐鑫明. 喹啉氮氧化物的功能化反应研究进展[J]. 有机化学, 2020, 40(12): 4071-4086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||