有机化学 ›› 2021, Vol. 41 ›› Issue (3): 1002-1011.DOI: 10.6023/cjoc202007051 上一篇 下一篇
综述与进展
刘玎a,b, 朱园园c, 古双喜a,b,*(), 陈芬儿a,b,d,*()
收稿日期:
2020-07-22
修回日期:
2020-09-14
发布日期:
2020-10-12
通讯作者:
古双喜, 陈芬儿
基金资助:
Ding Liua,b, Yuanyuan Zhuc, Shuangxi Gua,b,*(), Fener Chena,b,d,*()
Received:
2020-07-22
Revised:
2020-09-14
Published:
2020-10-12
Contact:
Shuangxi Gu, Fener Chen
About author:
Supported by:
文章分享
有机物的卤化反应是有机合成中最重要的转化之一. 传统釜式卤化反应存在高放热及选择性差等问题, 且卤化试剂一般具有毒性和腐蚀性. 流动化学在传质和传热方面具有显著优势, 可精确控制反应温度及试剂用量, 并且可在线淬灭危险试剂, 避免其暴露. 按有机化合物卤化反应分类, 系统地归纳了流动化学在氟化反应、氯化反应、溴化反应和碘化反应中的应用进展, 并展望了其发展趋势.
刘玎, 朱园园, 古双喜, 陈芬儿. 流动化学在卤化反应中的应用[J]. 有机化学, 2021, 41(3): 1002-1011.
Ding Liu, Yuanyuan Zhu, Shuangxi Gu, Fener Chen. Application of Flow Chemistry in Halogenation[J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1002-1011.
[1] |
(a) Neumann, C. S.; Fujimori, D. G.; Walsh, C. T. Chem. Biol. 2008, 15, 99.
doi: 10.1016/j.chembiol.2008.01.006 pmid: 28150944 |
(b) Lin, R.; Amrute, A. P.; Perez-Ramirez, J. Chem. Rev. 2017, 117, 4182.
doi: 10.1021/acs.chemrev.6b00551 pmid: 28150944 |
|
[2] |
Veisi, H.; Ghorbani-Vaghei, R. Tetrahedron 2010, 66, 7445. a93eb088-c6ab-4c5f-86de-ec0c1dd77d13
doi: 10.1016/j.tet.2010.07.015 |
[3] |
Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073.
doi: 10.1021/cr500706a pmid: 25854146 |
[4] |
Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 4583.
|
[5] |
Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
pmid: 28570059 |
[6] |
(a) Suryawanshi, P. L.; Gumfekar, S. P.; Bhanvase, B. A.; Sonawane, S. H.; Pimplapure, M. S. Chem. Eng. Sci. 2018, 189, 431.
|
(b) Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Renewable Sustainable Energy Rev. 2015, 47, 519.
|
|
(c) Pennemann, H.; Hessel, V.; Löwe, H. Chem. Eng. Sci. 2004, 59, 4789.
|
|
[7] |
(a) Cheng, D; Chen, F. Chem. Ind. Eng. Prog. 2019, 38, 556. (in Chinese)
pmid: 25989203 |
(程荡, 陈芬儿, 化工进展, 2019, 38, 556.)
pmid: 25989203 |
|
(b) Porta, R.; Benaglia, M.; Puglisi, A. Org. Process Res. Dev. 2016, 20, 2.
pmid: 25989203 |
|
(c) Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem.. Int. Ed. Engl. 2015, 54, 6688.
pmid: 25989203 |
|
[8] |
(a) Yu, T.; Ding, Z.; Nie, W.; Jiao, J.; Zhang, H.; Zhang, Q.; Xue, C.; Duan, X.; Yamada, Y. M. A.; Li, P. Chem.-Eur. J. 2020, 26, 5729.
pmid: 19478913 |
(b) Mak, X. Y.; Laurino, P.; Seeberger, P. H. Beilstein J. Org. Chem. 2009, 5, 19.
pmid: 19478913 |
|
[9] |
(a) Colella, M.; Carlucci, C.; Luisi, R. Top. Curr. Chem. 2018,376.
pmid: 33687795 |
(b) Yu, T.; Jiao, J.; Song, P.; Nie, W.; Li, P. ChemSusChem 2020.
pmid: 33687795 |
|
(c) Tanimu, A.; Jaenicke, S.; Alhooshani, K. Chem. Eng. J. 2017, 327, 792.
pmid: 33687795 |
|
[10] |
Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. Angew. Chem., Int. Ed. 2012, 51, 4144.
|
[11] |
(a) Atobe, M.; Tateno, H.; Matsumura, Y. Chem. Rev. 2018, 118, 4541.
pmid: 28885826 |
(b) Tien, T. T.; Luu, T. L. Environ. Eng. Res. 2020, 25, 324.
pmid: 28885826 |
|
[12] |
(a) Movsisyan, M.; Delbeke, E. I.; Berton, J. K.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892.
pmid: 27453961 |
(b) Gao,, Y..; Wang,, J. Chin. J. Org. Chem. 2018, 38, 1275. (in Chinese)
pmid: 27453961 |
|
(郜云鹏; 王剑波, 有机化学, 2018, 38, 1275.)
pmid: 27453961 |
|
[13] |
Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; Mcquade, D. T. Chem. Rev. 2007, 107, 2300.
pmid: 17373852 |
[14] |
(a) Illg, T.; Lob, P.; Hessel, V. Bioorg. Med. Chem. 2010, 18, 3707.
pmid: 30794752 |
(b) Bogdan, A. R.; Dombrowski, A. W. J. Med. Chem. 2019, 62, 6422.
pmid: 30794752 |
|
[15] |
(a) Tao, X.; Sheng, R.; Bao, K.; Wang, Y.; Jin, Y. Chin. J. Org. Chem. 2019, 39, 2726. (in Chinese)
pmid: 30893491 |
(陶雪芬, 盛荣, 鲍堃, 王玉新, 金银秀, 有机化学, 2019, 39, 2726.)
pmid: 30893491 |
|
(b) Zhang, F.; Peng, X.; Ma, J. Chin. J. Org. Chem. 2019, 39, 109. (in Chinese)
doi: 10.6023/cjoc201808007 pmid: 30893491 |
|
(张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)
pmid: 30893491 |
|
(c) Zhu, Y.-Y.; Wu, X.-D.; Abed, M.; Gu, S.-X.; Pu, L. Chem.-Eur. J. 2019, 25, 7866.
pmid: 30893491 |
|
[16] |
(a) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
pmid: 26200936 |
(b) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785. (in Chinese)
pmid: 26200936 |
|
(王江, 柳红, 有机化学, 2011, 31, 1785.)
pmid: 26200936 |
|
[17] |
(a) Campbell, M. G.; Ritter, T. Org. Process Res. Dev. 2014, 18, 474.
doi: 10.1021/op400349g pmid: 11848809 |
(b) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
pmid: 11848809 |
|
(c) Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96, 1737.
pmid: 11848809 |
|
[18] |
(a) Ma, J. A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
pmid: 15584697 |
(b) Shimizu, M.; Hiyama, T. Angew. Chem.. Int. Ed. 2004, 44, 214.
pmid: 15584697 |
|
(c) Richardson, P. Expert. Opin. Drug Discovery 2016, 11, 983.
pmid: 15584697 |
|
(d) Zeng, L.; Mao, M.; Wang, L.; Zhang, X.; Ning, B. Fine Chem. 2019, 36, 549. (in Chinese)
pmid: 15584697 |
|
(曾丽媛, 毛明珍, 王伦, 张晓光, 宁斌科, 精细化工, 2019, 36, 549.)
pmid: 15584697 |
|
[19] |
Chambers, R. D.; Spink, R. C. H. Chem. Commun 1999,883.
|
[20] |
Chambers, R. D.; Hutchinson, J.; Sparrowhawka, M. E.; Sandforda, G.; Moilliet, J. S.; Thomson, J. J. Fluorine Chem. 2000, 102, 169.
|
[21] |
Chambers, R. D.; Sandford, G.; Trmcic, J.; Okazoe, T. Org. Process Res. Dev. 2008, 12, 339.
|
[22] |
Elgue, S.; Conte, A.; Gourdon, C.; Bastard, Y. Chim. Oggi 2012, 30, 18.
|
[23] |
Baumann, M.; Baxendale, I. R.; Martin, L. J.; Ley, S. V. Tetrahedron 2009, 65, 6611.
|
[24] |
Nagaki, A.; Uesugi, Y.; Kim, H.; Yoshida, J. Chem.-Asian J. 2013, 8, 705.
pmid: 23401379 |
[25] |
Naumann, K. Pest Manage. Sci. 2000, 56, 3.
|
[26] |
Schmittinger, P.; Florkiewicz, T.; Curlin, L. C.; Lüke, B.; Scannell, R. ; Navin. T.; Zelfel, E.; Bartsch, R. Chlorine in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim, 2001.
|
[27] |
Strauss, F. J.; Cantillo, D.; Guerra, J.; Kappe, C. O. React. Chem. Eng. 2016, 1, 472.
|
[28] |
Blacker, A. J.; Jolley, K. E. Beilstein J. Org. Chem. 2015, 11, 2408.
pmid: 26734089 |
[29] |
Movsisyan, M.; Heugebaert, T. S. A.; Roman, B. I.; Dams, R.; Van Campenhout, R.; Conradi, M.; Stevens, C. V. Chem.-Eur. J. 2018, 24, 11779.
pmid: 29879290 |
[30] |
Reichart, B.; Tekautz, G.; Kappe, C. O. Org. Process Res. Dev. 2012, 17, 152.
|
[31] |
Borukhova, S.; Noël, T.; Hessel, V. Org. Process Res. Dev. 2016, 20, 568.
|
[32] |
Fukuyama, T.; Tokizane, M.; Matsui, A.; Ryu, I. React. Chem. Eng. 2016, 1, 613.
|
[33] |
Matsubara, H.; Hino, Y.; Tokizane, M.; Ryu, I. Chem. Eng. J. 2011, 167, 567.
|
[34] |
(a) Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
pmid: 27199233 |
(b) Groweiss, A. Org. Process Res. Dev. 2000, 4, 30.
pmid: 27199233 |
|
(c) Steiner, A.; Williams, J. D.; de Frutos, O.; Rincón, J. A.; Mateos, C.; Kappe, C. O. Green Chem. 2020, 22, 448.
pmid: 27199233 |
|
[35] |
Löb, P.; Hessel, V.; Klefenz, H. Lett. Org. Chem. 2005, 2, 767.
|
[36] |
(a) Löb, P.; Löwe, H.; Hessel, V. J. Fluorine Chem. 2004, 125, 1677.
|
(b) Becker, R.; van den Broek, S. A. M. W.; Nieuwland, P. J.; Koch, K.; Rutjes, F. P. J.T. J. Flow Chem. 2012, 2, 87.
|
|
[37] |
Fukuyama, T.; Rahman, M. T.; Kamata, N.; Tokizane, M.; Fukuda, Y.; Ryu, I. J. Flow Chem. 2013, 3, 4.
|
[38] |
Van, Waes, F. E. A.; Seghers,, S.; Dermaut,, W.; Cappuyns,, B.; Stevens,, C. V. J. Flow Chem. 2014, 4, 118.
|
[39] |
Manabe, Y.; Kitawaki, Y.; Nagasaki, M.; Fukase, K.; Matsubara, H.; Hino, Y.; Fukuyama, T.; Ryu, I. Chem.-Eur. J. 2014, 20, 12750.
pmid: 25170976 |
[40] |
Deng, Q.; Shen, R.; Ding, R.; Zhang, L. Chem. Eng. Technol. 2016, 39, 1445.
doi: 10.1002/ceat.201400723 |
[41] |
Zhang, Y.; Guo, X.; Yan, S.; Liu, J.; Shen, J. Spec. Petrochem. 2013, 30, 58. (in Chinese)
|
(张跃, 郭欣桐, 严生虎, 刘建武, 沈介发, 精细石油化工, 2013, 30, 58.)
|
|
[42] |
O’Brien, M.; Cooper, D. Synlett 2015, 27, 164.
|
[43] |
Šterk, D.; Jukič, M.; Časar, Z. Org. Process Res. Dev. 2013, 17, 145.
|
[44] |
Cantillo, D.; Kappe, C. O. React. Chem. Eng. 2017, 2, 7.
|
[45] |
Midorikawa, K.; Suga, S.; Yoshida, J. Chem. Commun. 2006,3794.
|
[46] |
Slocum, D. W.; Tekin, K. C.; Nguyen, Q.; Whitley, P. E.; Reinscheld, T. K.; Fouzia, B. Tetrahedron Lett. 2011, 52, 7141.
|
[47] |
D'Attoma, J.; Cozien, G.; Brun, P. L.; Robin, Y.; Bostyn, S.; Buron, F.; Routier, S. ChemistrySelect 2016, 1, 338.
|
[48] |
Ferreri, M.; Drageset, A.; Gambarotti, C.; Bjørsvik, H.-R. React. Chem. Eng. 2016, 1, 379.
|
[1] | 冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 全连续流反应技术在药物合成中的新进展(2019~2022)[J]. 有机化学, 2024, 44(2): 378-397. |
[2] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[3] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[4] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[5] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[6] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[7] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[8] | 张周, 郭钰, 羊静, 吴丹, 王佳昕, 洪欣玥, 蔡佩君, 荣良策. 电化学促进咪唑并[1,2-a]吡啶与二氯(溴)乙烷及碘仿的卤化反应[J]. 有机化学, 2023, 43(6): 2104-2109. |
[9] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[10] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[11] | 白林盛, 洪鹏, 应安国. 功能化聚丙烯腈纤维促进有机反应的研究进展[J]. 有机化学, 2023, 43(4): 1241-1270. |
[12] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[13] | 马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470. |
[14] | 乃比江•赛米, 张蕾, 买地娜•沙拉木, 曾竟, 阿布都热西提•阿布力克木. 硫代磺酸酯和磺酰卤的绿色合成研究[J]. 有机化学, 2023, 43(1): 236-243. |
[15] | 陈泗林, 杨芸辉, 陈超, 王从洋. 过渡金属催化的酮羰基导向C—H键官能化反应进展[J]. 有机化学, 2023, 43(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||