有机化学 ›› 2021, Vol. 41 ›› Issue (2): 529-542.DOI: 10.6023/cjoc202007007 上一篇 下一篇
综述与进展
收稿日期:
2020-07-02
修回日期:
2020-08-23
发布日期:
2020-10-28
通讯作者:
张晓凤, 黄秋锋
作者简介:
基金资助:
Weihui Zhuanga, Xiaofeng Zhanga,*(), Qiufeng Huanga,b,*()
Received:
2020-07-02
Revised:
2020-08-23
Published:
2020-10-28
Contact:
Xiaofeng Zhang, Qiufeng Huang
Supported by:
文章分享
脱氢偶联反应是最有效、最直接的构建C—C键或C—杂键的一种方法. 但是目前大多数脱氢偶联反应需要使用化学计量的有毒氧化剂, 如PhI(OAc)2、苯醌、Cu(II)盐、有机过氧酸或Ag(I)盐等. 氧气廉价易得, 作为脱氢偶联反应中的唯一氧化剂, 副产物只有水, 不会产生其他有毒副产物, 是绿色环境友好的方法. 根据催化剂的分类, 综述了氧气作为唯一氧化剂的交叉脱氢偶联反应研究进展.
庄伟辉, 张晓凤, 黄秋锋. 氧气为唯一氧化剂的交叉脱氢偶联反应研究进展[J]. 有机化学, 2021, 41(2): 529-542.
Weihui Zhuang, Xiaofeng Zhang, Qiufeng Huang. Recent Advances in Cross-Dehydrogenative-Coupling Reactions Using Molecular Oxygen as the Sole Oxidant[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 529-542.
[1] |
(a) Chen Z.; Wang B.; Zhang J.; Yu W.; Liu Z.; Zhang Y. Org. Chem. Front. 2015, 2, 1107.
doi: 10.1039/C5QO00004A |
(b) Yang L.; Huang H. Chem. Rev. 2015, 115, 3468.
doi: 10.1021/cr500610p |
|
(c) He J.; Wasa M.; Chan K. S. L.; Shao Q.; Yu J.-Q. Chem. Rev. 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 |
|
(d) Murakami K.; Yamada S.; Kaneda T.; Itami K. Chem. Rev. 2017, 117, 9302.
doi: 10.1021/acs.chemrev.7b00021 |
|
(e) Newton C.G.; Wang S.-G.; Oliveira C.C.; Cramer N. C hem. Rev. 2017, 117, 8908.
|
|
(f) Karimov R.R.; Hartwig J.F. Angew. Chem. Int. Ed. 2018, 57, 4234.
doi: 10.1002/anie.201710330 |
|
(g) Zheng L.; Hua R. Chem. Rec. 2018, 18, 556.
doi: 10.1002/tcr.v18.6 |
|
(h) Niu B.; Yang K.; Lawrence B.; Ge H. ChemSusChem 2019, 12, 2955.
doi: 10.1002/cssc.v12.13 |
|
[2] |
(a) Liu C.; Yuan J.; Gao M.; Tang S.; Li W.; Shi R.; Lei A. Chem. Rev. 2015, 115, 12138.
doi: 10.1021/cr500431s pmid: 28970941 |
(b) Kim H.; Chang S. ACS Catal. 2016, 6, 2341.
doi: 10.1021/acscatal.6b00293 pmid: 28970941 |
|
(c) Henry M.C.; Mostafa M. A. B.; Sutherland A. Synthesis 2017, 49, 4586.
doi: 10.1055/s-0036-1588536 pmid: 28970941 |
|
(d) Lakshman M.K.; Vuram P.K. Chem. Sci. 2017, 8, 5845.
doi: 10.1039/c7sc01045a pmid: 28970941 |
|
(e) Varun B.V.; Dhineshkumar J.; Bettadapur K.R.; Siddaraju Y.; Alagiri K.; Prabhu K.R. Tetrahedron Lett. 2017, 58, 803.
doi: 10.1016/j.tetlet.2017.01.035 pmid: 28970941 |
|
(f) Yang Y.; Lan J.; You J. Chem. Rev. 2017, 117, 8787.
doi: 10.1021/acs.chemrev.6b00567 pmid: 28970941 |
|
(g) Tang S.; Zeng L.; Lei A. J. Am. Chem. Soc. 2018, 140, 13128.
doi: 10.1021/jacs.8b07327 pmid: 28970941 |
|
(h) Huang C.-Y.; Kang H.; Li J.; Li C.-J. J. Org. Chem. 2019, 84, 12705.
doi: 10.1021/acs.joc.9b01704 pmid: 28970941 |
|
[3] |
(a) Campbell A.N.; Stahl S.S. Acc. Chem. Res. 2012, 45, 851.
doi: 10.1021/ar2002045 |
(b) Shi Z.; Zhang C.; Tang C.; Jiao N. Chem. Soc. Rev. 2012, 41, 3381.
doi: 10.1039/c2cs15224j |
|
(c) McCann S.D.; Stahl S.S. Acc. Chem. Res. 2015, 48, 1756.
doi: 10.1021/acs.accounts.5b00060 |
|
(d) Liang Y.-F.; Jiao N. Acc. Chem. Res. 2017, 50, 1640.
doi: 10.1021/acs.accounts.7b00108 |
|
[4] |
(a) Chen X.; Engle K.M.; Wang D.-H.; Yu J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094.
doi: 10.1002/anie.v48:28 |
(b) Lyons T.W.; Sanford M.S. Chem. Rev. 2010, 110, 1147.
doi: 10.1021/cr900184e |
|
(c) He C.; Whitehurst W.G.; Gaunt M.J. Chem 2019, 5, 1031.
doi: 10.1016/j.chempr.2018.12.017 |
|
(d) Shao Q.; Wu K.; Zhuang Z.; Qian S.; Yu J.-Q. Acc. Chem. Res. 2020, 53, 833.
doi: 10.1021/acs.accounts.9b00621 |
|
[5] |
Campbell A.N.; Stahl S.S. Acc. Chem. Res. 2012, 45, 851.
doi: 10.1021/ar2002045 |
[6] |
Wang D.; Weinstein A.B.; White P.B.; Stahl S.S. Chem. Rev. 2017, 118, 2636.
doi: 10.1021/acs.chemrev.7b00334 |
[7] |
Zhang Y.-H.; Shi B.-F.; Yu J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
doi: 10.1021/ja900327e |
[8] |
Piotrowicz M.; Zakrzewski J. Organometallics 2013, 32, 5709.
doi: 10.1021/om400410u |
[9] |
Piotrowicz M.; Zakrzewski J.; Metivier R.; Brosseau A.; Makal A.; Wozniak K. J. Org. Chem. 2015, 80, 2573.
doi: 10.1021/jo502619k |
[10] |
Liu B.; Jiang H.-Z.; Shi B.-F. J. Org. Chem. 2014, 79, 1521.
doi: 10.1021/jo4027403 |
[11] |
Shi B.-F.; Maugel N.; Zhang Y.-H.; Yu J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
doi: 10.1002/(ISSN)1521-3773 |
[12] |
Engle K.M.; Wang D.-H.; Yu J.-Q. Angew. Chem., Int. Ed. 2010, 49, 6169.
doi: 10.1002/anie.201002077 |
[13] |
Engle K.M.; Wang D.-H.; Yu J.-Q. J. Am. Chem. Soc. 2010, 132, 14137.
doi: 10.1021/ja105044s |
[14] |
Cong X.; Tang H.; Wu C.; Zeng X. Organometallics 2013, 32, 6565.
doi: 10.1021/om400890p |
[15] |
Huang Q.; Zhang X.; Qiu L.; Wu J.; Xiao H.; Zhang X.; Lin S. Adv. Synth. Catal. 2015, 357, 3753.
doi: 10.1002/adsc.201500632 |
[16] |
Zhang X.; Su L.; Qiu L.; Fan Z.; Zhang X.; Lin S.; Huang Q. Org. Biomol. Chem. 2017, 15, 3499.
doi: 10.1039/C7OB00616K |
[17] |
Pan G.; Wu K.; Deng Z.; Zhang X.; Zhang X.; Lin S.; Huang Q. Chin. J. Org. Chem. 2018, 38, 2076. (in Chinese)
doi: 10.6023/cjoc201802008 pmid: 9DC15241-6BDA-4AF3-AFF4-9FD62DB48F40 |
潘帼帅, 吴孔川, 邓泽颖, 张馨予, 张晓凤, 林深, 黄秋锋, 有机化学, 2018, 38, 2076.).
doi: 10.6023/cjoc201802008 pmid: 9DC15241-6BDA-4AF3-AFF4-9FD62DB48F40 |
|
[18] |
(a) Jeffery T. Tetrahedron 1996, 52, 10113.
doi: 10.1016/0040-4020(96)00547-9 |
(b) Phan N. T. S.; Van Der Sluys M.; Jones C.W. Adv. Synth. Catal. 2006, 348, 609.
doi: 10.1002/(ISSN)1615-4169 |
|
[19] |
Wei Y.; Deb I.; Yoshikai N. J. Am. Chem. Soc. 2012, 134, 9098.
doi: 10.1021/ja3030824 |
[20] |
Ghosh M.; Naskar A.; Mitra S.; Hajra A. Eur. J. Org. Chem. 2015, 2015, 715.
|
[21] |
Wu Y.-B.; Xie D.; Zang Z.-L.; Zhou C.H.; Cai G.-X. Chem. Commun. 2018, 54, 4437.
doi: 10.1039/C8CC01226A |
[22] |
Shan C.; Bai R.; Lan Y. Acta Phys.-Chim. Sin. 2019, 35, 940. (in Chinese)
doi: 10.3866/PKU.WHXB201810052 |
单春晖, 白若鹏, 蓝宇, 物理化学学报, 2019, 35, 940.).
|
|
[23] |
Li H.; Shi Z. Prog. Chem. 2010, 22, 1414. (in Chinese)
pmid: 9B1C57CE-0D97-44CA-A730-97D5F0EBC653 |
李湖, 施章杰, 化学进展, 2010, 22, 1414.).
pmid: 9B1C57CE-0D97-44CA-A730-97D5F0EBC653 |
|
[24] |
Liegault B.; Lee D.; Huestis M.P.; Stuart D.R.; Fagnou K. J. Org. Chem. 2008, 73, 5022.
doi: 10.1021/jo800596m |
[25] |
(a) Min M.; Kim Y.; Hong S. Chem. Commun. 2013, 49, 196.
doi: 10.1039/C2CC37676H |
(b) Kim N.; Min M.; Hong S. Org. Chem. Front. 2015, 2, 1621.
doi: 10.1039/C5QO00294J |
|
(c) Mizuta Y.; Yasuda K.; Obora Y. J. Org. Chem. 2013, 78, 6332.
doi: 10.1021/jo4010734 |
|
(d) Lv J.; Liang Y.; He P.; Cai Z.; Liu J.; Huang F. RSC Adv. 2015, 5, 36171.
doi: 10.1039/C5RA02932E |
|
[26] |
(a) Xu Y.-H.; Chok Y.K.; Loh T.-P. Chem. Sci. 2011, 2, 1822.
doi: 10.1039/c1sc00262g |
(b) Zhou L.; Lu W. Organometallics 2012, 31, 2124.
doi: 10.1021/om300114e |
|
(c) Chen W.-L.; Gao Y.-R.; Mao S.; Zhang Y.-L.; Wang Y.-F.; Wang Y.-Q. Org. Lett. 2012, 14, 5920.
doi: 10.1021/ol302840b |
|
(d) Li N.-N.; Zhang Y.-L.; Mao S.; Gao Y.-R.; Guo D.-D.; Wang Y.-Q. Org. Lett. 2014, 16, 2732.
doi: 10.1021/ol501019y |
|
(e) Ishida N.; Nakanishi Y.; Moriya T.; Murakami M. Chem. Lett. 2011, 40, 1047.
doi: 10.1246/cl.2011.1047 |
|
(f) Yang D.; Mao S.; Gao Y.-R.; Guo D.-D.; Guo S.-H.; Li B.; Wang Y.-Q. RSC Adv. 2015, 5, 23727.
doi: 10.1039/C5RA02245B |
|
[27] |
Rogers M.M.; Kotov V.; Chatwichien J.; Stahl S.S. Org. Lett. 2007, 9, 4331.
doi: 10.1021/ol701903r |
[28] |
(a) Yang L.; Zhang G.; Huang H. Adv. Synth. Catal. 2014, 356, 1509.
doi: 10.1002/adsc.v356.7 |
(b) Tang J.; Li S.; Liu Z.; Zhao Y.; She Z.; Kadam V.D.; Gao G.; Lan J.; You J. Org. Lett. 2017, 19, 604.
doi: 10.1021/acs.orglett.6b03772 |
|
[29] |
Feng C.; Loh T.-P. J. Am. Chem. Soc. 2010, 132, 17710.
doi: 10.1021/ja108998d |
[30] |
Dey A.; Ali M.A.; Jana S.; Samanta S.; Hajra A. Tetrahedron Lett. 2017, 58, 313.
doi: 10.1016/j.tetlet.2016.12.010 |
[31] |
Kumar K.S.; Meesa S.R.; Naikawadi P.K. Org. Lett. 2018, 20, 6079.
doi: 10.1021/acs.orglett.8b02465 |
[32] |
(a) Ueura K.; Satoh T.; Miura M. Org. Lett. 2007, 9, 1407.
doi: 10.1021/ol070406h |
(b) Colby D.A.; Bergman R.G.; Ellman J.A. Chem. Rev. 2010, 110, 624.
doi: 10.1021/cr900005n |
|
(c) Patureau F.W.; Joanna W.-D.; Glorius F. Aldrichim. Acta 2012, 45, 31.
|
|
(d) Song G.; Li X. Acc. Chem. Res. 2015, 48, 1007.
doi: 10.1021/acs.accounts.5b00077 |
|
(e) Li S.-S.; Qin L.; Dong L. Org. Biomol. Chem. 2016, 14, 4554.
doi: 10.1039/C6OB00209A |
|
(f) Qi X.; Li Y.; Bai R.; Lan Y. Acc. Chem. Res. 2017, 50, 2799.
doi: 10.1021/acs.accounts.7b00400 |
|
(g) Vásquez-Céspedes S.; Wang X.; Glorius F. ACS Catal. 2017, 8, 242.
doi: 10.1021/acscatal.7b03048 |
|
(h) Rej S.; Chatani N. Angew. Chem. Int. Ed. 2019, 58, 8304.
doi: 10.1002/anie.v58.25 |
|
(i) Zhu W.; Gunnoe T.B. Acc. Chem. Res. 2020, 53, 920.
doi: 10.1021/acs.accounts.0c00036 |
|
[33] |
(a) Zhang G.; Yang L.; Wang Y.; Xie Y.; Huang H. J. Am. Chem. Soc. 2013, 135, 8850.
doi: 10.1021/ja404414q |
(b) Han W.; Zhang G.; Li G.; Huang H. Org. Lett. 2014, 16, 3532.
doi: 10.1021/ol501483k |
|
(c) Zhang G.; Yu H.; Qin G.; Huang H. Chem. Commun. 2014, 50, 4331.
doi: 10.1039/C3CC49751H |
|
[34] |
Lu Y.; Wang H.-W.; Spangler J.E.; Chen K.; Cui P.-P.; Zhao Y.; Sun W.-Y.; Yu J.-Q. Chem. Sci. 2015, 6, 1923.
doi: 10.1039/C4SC03350G |
[35] |
Jiang Q.; Zhu C.; Zhao H.; Su W. Chem.- Asian J. 2016, 11, 356.
doi: 10.1002/asia.v11.3 |
[36] |
Jambu S.; Sivasakthikumaran R.; Jeganmohan M. Org. Lett. 2019, 21, 1320.
doi: 10.1021/acs.orglett.8b04140 |
[37] |
(a) Arockiam P.B.; Bruneau C.; Dixneuf P.H. Chem. Rev. 2012, 112, 5879.
doi: 10.1021/cr300153j pmid: 21500408 |
(b) Ackermann L.; Vicente R. Top. Curr. Chem. 2010, 292, 211.
pmid: 21500408 |
|
(c) Ackermann L. Acc. Chem. Res. 2014, 47, 281.
doi: 10.1021/ar3002798 pmid: 21500408 |
|
(d) Ruiz S.; Villuendas P.; Urriolabeitia E.P. Tetrahedron Lett. 2016, 57, 3413.
pmid: 21500408 |
|
(e) Nareddy P.; Jordan F.; Szostak M. ACS Catal. 2017, 7, 5721.
doi: 10.1021/acscatal.7b01645 pmid: 21500408 |
|
(f) Khan F.F.; Sinha S.K.; Lahiri G.K.; Maiti D. Chem.-Asian J. 2018, 13, 2243.
doi: 10.1002/asia.201800545 pmid: 21500408 |
|
(g) Shan C.; Zhu L.; Qu L.-B.; Bai R.; Lan Y. Chem. Soc. Rev. 2018, 47, 7552.
doi: 10.1039/C8CS00036K pmid: 21500408 |
|
[38] |
Bechtoldt A.; Tirler C.; Raghuvanshi K.; Warratz S.; Kornhaass C.; Ackermann L. Angew. Chem., Int. Ed. 2016, 55, 264.
doi: 10.1002/anie.201507801 |
[39] |
Bechtoldt A.; Baumert M.E.; Vaccaro L.; Ackermann L. Green Chem. 2018, 20, 398.
doi: 10.1039/C7GC03353B |
[40] |
Li X.; Hu X.; Liu Z.; Yang J.; Mei B.; Dong Y.; Liu G. J. Org. Chem. 2020, 85, 5916.
doi: 10.1021/acs.joc.0c00242 |
[41] |
Hayashi H.; Ueno T.; Kim C.; Uchida T. Org. Lett. 2020, 22, 1469.
doi: 10.1021/acs.orglett.0c00048 |
[42] |
(a) Gandeepan P.; Muller T.; Zell D.; Cera G.; Warratz S.; Ackermann L. Chem. Rev. 2019, 119, 2192.
doi: 10.1021/acs.chemrev.8b00507 pmid: WOS:000460199900004 |
(b) Loginov D.A.; Shul'pina L.S.; Muratov D.V.; Shul'pin G.B. Coord. Chem. Rev. 2019, 387, 1.
doi: 10.1016/j.ccr.2019.01.022 pmid: WOS:000460199900004 |
|
(c) Loup J.; Dhawa U.; Pesciaioli F.; Wencel-Delord J.; Ackermann L. Angew. Chem. Int. Ed. 2019, 58, 12803.
doi: 10.1002/anie.v58.37 pmid: WOS:000460199900004 |
|
(d) Ackermann L. Acc. Chem. Res. 2020, 53, 84.
doi: 10.1021/acs.accounts.9b00510 pmid: WOS:000460199900004 |
|
[43] |
Egami H.; Katsuki T. J. Am. Chem. Soc. 2009, 131, 6082.
doi: 10.1021/ja901391u |
[44] |
Egami H.; Matsumoto K.; Oguma T.; Kunisu T.; Katsuki T. J. Am. Chem. Soc. 2010, 132, 13633.
doi: 10.1021/ja105442m |
[45] |
Niu T.; Zhang Y. Tetrahedron Lett. 2010, 51, 6847.
doi: 10.1016/j.tetlet.2010.10.088 |
[46] |
Fritsche R.F.; Theumer G.; Kataeva O.; Knölker H.J. Angew. Chem., Int. Ed. 2017, 56, 549.
doi: 10.1002/anie.201610168 |
[47] |
Purtsas A.; Kataeva O.; Knölker H.J. Chem.-Eur. J. 2019, 25, 13759.
doi: 10.1002/chem.v25.60 |
[48] |
Huang T.; Liu X.; Lang J.; Xu J.; Lin L.; Feng X. ACS Catal. 2017, 7, 5654.
doi: 10.1021/acscatal.7b01912 |
[49] |
Huang X.; Chen Y.; Zhen S.; Song L.; Gao M.; Zhang P.; Li H.; Yuan B.; Yang G. J. Org. Chem. 2018, 83, 7331.
doi: 10.1021/acs.joc.7b02718 |
[50] |
Reiss H.; Shalit H.; Vershinin V.; More N.Y.; Forckosh H.; Pappo D. J. Org. Chem. 2019, 84, 7950.
doi: 10.1021/acs.joc.9b00822 |
[51] |
Liu Y.-H.; Liu Y.-J.; Yan S.-Y.; Shi B.-F. Chem. Commun. 2015, 51, 11650.
doi: 10.1039/C5CC03729H |
[52] |
Nishino M.; Hirano K.; Satoh T.; Miura M. Angew. Chem., Int. Ed. 2012, 51, 6993.
doi: 10.1002/anie.201201491 |
[53] |
Zhang G.; Ma Y.; Wang S.; Zhang Y.; Wang R. J. Am. Chem. Soc. 2012, 134, 12334.
doi: 10.1021/ja303333k |
[54] |
Fraser J.; Wilson L.J.; Blundell R.K.; Hayes C.J. Chem. Commun. 2013, 49, 8919.
doi: 10.1039/c3cc45680c |
[55] |
Wang C.; Yang Y.; Qin D.; He Z.; You J. J. Org. Chem. 2015, 80, 8424.
doi: 10.1021/acs.joc.5b01302 |
[56] |
Ahmad A.; Dutta H.S.; Khan B.; Kant R.; Koley D. Adv. Synth. Catal. 2018, 360, 1644.
doi: 10.1002/adsc.v360.8 |
[57] |
Santoro S.; Kozhushkov S.I.; Ackermann L.; Vaccaro L. Green Chem. 2016, 18, 3471.
doi: 10.1039/C6GC00385K |
[58] |
Matsushita M.; Kamata K.; Yamaguchi K.; Mizuno N. J. Am. Chem. Soc. 2005, 127, 6632.
pmid: 15869284 |
[59] |
Jin X.; Yamaguchi K.; Mizuno N. Chem. Commun. 2012, 48, 4974.
doi: 10.1039/c2cc31159c |
[60] |
Ishida T.; Aikawa S.; Mise Y.; Akebi R.; Hamasaki A.; Honma T.; Ohashi H.; Tsuji T.; Yamamoto Y.; Miyasaka M.; Yokoyama T.; Tokunaga M. ChemSusChem 2015, 8, 695.
doi: 10.1002/cssc.201402822 pmid: 25583080 |
[61] |
Dutta B.; Biswas S.; Sharma V.; Savage N.O.; Alpay S.P.; Suib S.L. Angew. Chem., Int. Ed. 2016, 55, 2171.
doi: 10.1002/anie.201508223 |
[62] |
Singh H.; Pal P.; Sen C.; Panda A.B.; Ghosh S.C. Asian J. Org. Chem. 2017, 6, 702.
doi: 10.1002/ajoc.v6.6 |
[63] |
Yang W.; Wei L.; Yan T.; Cai M. Catal. Sci. Technol. 2017, 7, 1744.
doi: 10.1039/C6CY02567F |
[64] |
Yatabe T.; Jin X.; Mizuno N.; Yamaguchi K. ACS Catal. 2018, 8, 4969.
doi: 10.1021/acscatal.8b00727 |
[65] |
Matsumoto K.; Takeda S.; Hirokane T.; Yoshida M. Org. Lett. 2019, 21, 7279.
doi: 10.1021/acs.orglett.9b02527 pmid: WOS:000487577200019 |
[66] |
Bering L.; Vogt M.; Paulussen F.M.; Antonchick A.P. Org. Lett. 2018, 20, 4077.
doi: 10.1021/acs.orglett.8b01631 |
[67] |
Saha S.; Banerjee A.; Maji M.S. Org. Lett. 2018, 20, 6920.
doi: 10.1021/acs.orglett.8b03063 |
[68] |
Chen Q.; Yu G.; Wang X.; Ou Y.; Huo Y. Green Chem. 2019, 21, 798.
doi: 10.1039/C8GC03898H |
[1] | 王馨瑶, 张晴晴, 刘书扬, 李敏, 李海芳, 段春迎, 金云鹤. 可见光诱导无金属条件下交叉脱氢偶联反应合成醌类苄基化衍生物[J]. 有机化学, 2022, 42(5): 1443-1452. |
[2] | 徐东平, 黄飞, 汤琳, 张新明, 张武. 可见光诱导杂芳烃与脂肪醇的羟烷基化反应[J]. 有机化学, 2022, 42(5): 1493-1500. |
[3] | 师静, 郭鹏飞, 李蔚, 孙海静, 孟令武, 仝新利. 铜(I)催化生物质基平台化合物糠醛与直链醇的氧化-缩合反应[J]. 有机化学, 2022, 42(3): 905-909. |
[4] | 赵喜, 区颖聪, 刘艳, Keiji Maruoka, 陈迁. 氧气引发的硫中心自由基参与的构建S—S、P—S和C—S键研究进展[J]. 有机化学, 2021, 41(9): 3366-3378. |
[5] | 田婉群, 李梦媛, 杨霜, 章浩, 刘海洋, 肖新颜. 铜咔咯催化烯丙基sp3-C—H键与羧酸的酯化反应[J]. 有机化学, 2021, 41(7): 2875-2884. |
[6] | 王浩, 应娉, 俞静波, 苏为科. 交叉脱氢偶联反应构建碳-碳键的可替代策略[J]. 有机化学, 2021, 41(5): 1897-1924. |
[7] | 陈缘, 夏立静, 常怡婷, 马武珍, 王彬. N-烷基胺类作为多功能砌块在氧化偶联反应中的应用[J]. 有机化学, 2021, 41(5): 1851-1877. |
[8] | 阿布力米提·阿布都卡德尔, 汪荣, 买尔哈巴·买买提, 刘晨江. O2参与下FeCl2催化的分子内氧化反应构建异噁唑杂环[J]. 有机化学, 2020, 40(6): 1697-1703. |
[9] | 吴锦雯, 朱佳雯, 李慧, 吴春雷, 沈润溥, 余乐茂. 过渡金属催化氧气氧插入反应研究进展[J]. 有机化学, 2019, 39(12): 3328-3337. |
[10] | AhmadMuhammad Siddique, 主亚敏, 郭云龙, 张赛赛, 沈增明. 铜催化的有氧氧化合成靛红类衍生物的方法[J]. 有机化学, 2019, 39(11): 3244-3249. |
[11] | 孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全. 可见光诱导的无过渡金属催化交叉脱氢偶联反应研究进展[J]. 有机化学, 2019, 39(11): 3065-3083. |
[12] | 王华斌, 付强, 张智杰, 高明, 姬建新, 易东. 盐酸促进、铜/铁共催化2-取代丙烯酸酯与膦氧类化合物的脱酯氧膦化反应[J]. 有机化学, 2018, 38(8): 1977-1984. |
[13] | 潘帼帅, 吴孔川, 邓泽颖, 张馨予, 张晓凤, 林深, 黄秋锋. 氧气作为唯一氧化剂的钯催化咖啡因或尿嘧啶C-H键直接芳基化反应[J]. 有机化学, 2018, 38(8): 2076-2084. |
[14] | 邱会华, 成博睿, 黄颖思, 陈翠, 周鹏. Pd/O2体系中邻炔基苯乙烯类衍生物的氯钯化/Heck串联反应研究[J]. 有机化学, 2018, 38(7): 1817-1822. |
[15] | 吴空, 宋婵, 崔冬梅. 氧气参与的无张力碳-碳单键断裂反应研究进展[J]. 有机化学, 2017, 37(3): 586-602. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||