有机化学 ›› 2021, Vol. 41 ›› Issue (6): 2326-2334.DOI: 10.6023/cjoc202012028 上一篇 下一篇
所属专题: 有机电合成虚拟专辑
研究论文
吴媚a, 于玲b, 侯慧青a, 陈厚铮a, 庄庆龙a, 周孙英a, 林小燕a,*()
收稿日期:
2020-12-18
修回日期:
2021-03-03
发布日期:
2021-03-22
通讯作者:
林小燕
基金资助:
Mei Wua, Ling Yub, Huiqing Houa, Houzheng Chena, Qinglong Zhuanga, Sunying Zhoua, Xiaoyan Lina()
Received:
2020-12-18
Revised:
2021-03-03
Published:
2021-03-22
Contact:
Xiaoyan Lin
Supported by:
文章分享
喹唑啉酮类化合物是一种重要的含氮杂环化合物, 也是多种天然产物以及合成药物的骨架分子. 利用廉价易得的苯甲醇以及邻氨基苯甲酰胺为原料, 通过CuCl2和电流共同氧化苯甲醇, 在室温条件下于水相中一锅法合成喹唑啉酮及其衍生物, 目标化合物可获得中等至优秀的产率. 该方法用电流代替价格昂贵、毒性大的氧化剂, 为合成喹唑啉酮类化合物提供了一条操作简便、绿色可持续的合成途径.
吴媚, 于玲, 侯慧青, 陈厚铮, 庄庆龙, 周孙英, 林小燕. 水相中电化学促进铜催化苯甲醇氧化合成喹唑啉酮[J]. 有机化学, 2021, 41(6): 2326-2334.
Mei Wu, Ling Yu, Huiqing Hou, Houzheng Chen, Qinglong Zhuang, Sunying Zhou, Xiaoyan Lin. Electrochemistry-Enabled Copper-Catalyzed Oxidation of Benzyl Alcohols for the Preparation of Quinazolinones in Water[J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2326-2334.
Entry | Solvent | Cat. | Base | Current/ mA | t/h | Electrode | Yieldb/ % |
---|---|---|---|---|---|---|---|
1 | CH3CN | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 51 |
2 | DMSO | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 72 |
3 | DMF | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 60 |
4 | Toluene | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 80 |
5 | H2 O | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 91 |
6 | H2O | CuSO4 | NaOH | 40 | 12 | Pt-Pt | 53 |
7 | H2O | Cu(OAc)2 | NaOH | 40 | 12 | Pt-Pt | 67 |
8 | H2O | Cu(NO3)2 | NaOH | 40 | 12 | Pt-Pt | 57 |
9 | H2O | — | NaOH | 40 | 12 | Pt-Pt | Trace |
10 | H2O | CuCl2 | K2CO3 | 40 | 12 | Pt-Pt | 51 |
11 | H2O | CuCl2 | Cs2CO3 | 40 | 12 | Pt-Pt | 66 |
12 | H2O | CuCl2 | KOH | 40 | 12 | Pt-Pt | 72 |
13 | H2O | CuCl2 | — | 40 | 12 | Pt-Pt | Trace |
14 | H2O | CuCl2 | NaOH | 30 | 12 | Pt-Pt | 82 |
15 | H2O | CuCl2 | NaOH | 50 | 12 | Pt-Pt | 68 |
16c | H2O | CuCl2 | NaOH | — | 12 | Pt-Pt | Trace |
17 | H2O | CuCl2 | NaOH | 40 | 11 | Pt-Pt | 84 |
18 | H2O | CuCl2 | NaOH | 40 | 13 | Pt-Pt | 91 |
19 | H2O | CuCl2 | NaOH | 40 | 12 | Pt-C | 86 |
20 | H2O | CuCl2 | NaOH | 40 | 12 | Pt-Ag | 79 |
21d | H2O | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 90 |
Entry | Solvent | Cat. | Base | Current/ mA | t/h | Electrode | Yieldb/ % |
---|---|---|---|---|---|---|---|
1 | CH3CN | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 51 |
2 | DMSO | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 72 |
3 | DMF | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 60 |
4 | Toluene | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 80 |
5 | H2 O | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 91 |
6 | H2O | CuSO4 | NaOH | 40 | 12 | Pt-Pt | 53 |
7 | H2O | Cu(OAc)2 | NaOH | 40 | 12 | Pt-Pt | 67 |
8 | H2O | Cu(NO3)2 | NaOH | 40 | 12 | Pt-Pt | 57 |
9 | H2O | — | NaOH | 40 | 12 | Pt-Pt | Trace |
10 | H2O | CuCl2 | K2CO3 | 40 | 12 | Pt-Pt | 51 |
11 | H2O | CuCl2 | Cs2CO3 | 40 | 12 | Pt-Pt | 66 |
12 | H2O | CuCl2 | KOH | 40 | 12 | Pt-Pt | 72 |
13 | H2O | CuCl2 | — | 40 | 12 | Pt-Pt | Trace |
14 | H2O | CuCl2 | NaOH | 30 | 12 | Pt-Pt | 82 |
15 | H2O | CuCl2 | NaOH | 50 | 12 | Pt-Pt | 68 |
16c | H2O | CuCl2 | NaOH | — | 12 | Pt-Pt | Trace |
17 | H2O | CuCl2 | NaOH | 40 | 11 | Pt-Pt | 84 |
18 | H2O | CuCl2 | NaOH | 40 | 13 | Pt-Pt | 91 |
19 | H2O | CuCl2 | NaOH | 40 | 12 | Pt-C | 86 |
20 | H2O | CuCl2 | NaOH | 40 | 12 | Pt-Ag | 79 |
21d | H2O | CuCl2 | NaOH | 40 | 12 | Pt-Pt | 90 |
[1] |
(a) Kametani, T.; Loc, C. V.; Higa, T.; Koizumi, M.; Ihara, M.; Fukumoto, K. J. J. Am. Chem. Soc. 1977, 99,2306.
|
(b) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1999, 51,1883.
|
|
[2] |
(a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103,893.
|
(b) Xu, L.; Jiang, Y.; Ma, D. Org. Lett. 2012, 14,1150.
|
|
(c) Mhaske, S. B.; Argade, N. P. Tetrahedron 2006, 62,9787.
|
|
(d) Witt, A.; Bergman, J. Curr. Org. Chem. 2003, 7,659.
|
|
(e) Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Eur. J. Med. Chem. 2014, 76,193.
|
|
[3] |
(a) Kaur, R.; Manjal, S. K.; Rawal, R. K.; Kumar, K. Bioorg. Med. Chem. 2017, 25,4533.
|
(b) Lin, C.-J.; Chang, Y.-L.; Yang, Y.-L.; Chen, Y.-L. Med. Mycol. 2020,DOI: 10.1093/mmy/myaa074.
|
|
[4] |
(a) Jahng, Y.; Kwon, O. K.; Lee, S. Arch. Pharm. Res. 2012, 35,2199.
|
(b) Bowman, W. R.; Elsegood, M. R.; Stein, T.; Weaver, G. W. Org. Biomol. Chem. 2007, 5,103.
|
|
[5] |
(a) Romero, A. H.; Salazar, J.; Lopez, S. E. Synthesis 2013, 45,2043.
|
(b) Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. J. Org. Chem. 2012, 77,7046.
|
|
[6] |
Larsen, P. J.; Lykkegaard, K.; Larsen, L. K.; Fleckner, J.; Sauerberg, P.; Wassermann, K.; Wulff, E. M. Eur. J. Pharmacol. 2008, 596,173.
|
[7] |
Ionescu-Pioggia, M.; Bird, M.; Orzack, M. H.; Benes, F.; Beake, B.; Cole, J. O. Int. Clin. Psychopharm. 1988, 3,97.
|
[8] |
(a) Wan, Z.-K.; Wacharasindhu, S.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. J. Org. Chem. 2007, 72,10194.
|
(b) McLaughlin, N. P.; Evans, P.; Pines, M. Bioorg. Med. Chem. 2014, 22,1993.
|
|
(c) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111,7157.
|
|
[9] |
(a) Chen, J.; Natte, K.; Spannenberg, A.; Neumann, H.; Langer, P.; Beller, M.; Wu, X.-F. Angew. Chem. Int. Ed. 2014, 53,7579.
|
(b) Chen, J.; Neumann, H.; Bellera, M.; Wu, X.-F. Org. Biomol. Chem. 2014, 12,5835.
|
|
(c) Rather, B. A.; Raj, T.; Reddy, A.; Ishar, M. P. S.; Sivakumar, S.; Paneerselvam, P. Arch. Pharm. Chem. Life Sci. 2010, 343,108.
|
|
(d) Maiden, T. M. M.; Harrity, J. P. A. Org. Biomol. Chem. 2016, 14,8014.
|
|
(e) Rohokale, R. S.; Kshirsagar, U. A. Synthesis 2016, 48,1253.
|
|
(f) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15,2713.
|
|
(g) He, L.; Li, H.; Chen, J.; Wu, X.-F. RSC Adv. 2014, 4,12065.
|
|
(h) Teng, Q.-H.; Sun, Y.; Yao, Y.; Tang, H.-T.; Li, J.-R.; Pan, Y.-M. ChemElectorChem 2019, 6,3120.
|
|
(i) Yao, Y.; Meng, X.-J.; Teng, Q.-H.; Chen, Y.-Y. Synlett 2020, 31,1795.
|
|
(j) Chen, X.; Xia, F.; Zhao, Y.; Ma, J.; Ma, Y.; Zhang, D.; Yang, L. Chin. J. Chem. 2020, 38,1239.
|
|
(k) Yang, Q.-L.; Wang, X.-Y.; Weng, X.-J.; Yang, X.; Xu, X.-T.; Tong, X.; Fang, P.; Wu, X.-Y.; Mei, T.-S. Acta Chim. Sinica 2019, 77,866(in Chinese).
|
|
(杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77,866.)
|
|
[10] |
(a) Bie, Z.; Li, G.; Wang, L.; Lv, Y.; Niu, J.; Gao, S. Tetrahedron Lett. 2016, 57,4935.
|
(b) Du, Y.; Zhao, K.; Cheng, R.; Guo, T.; Zhang-Negrerie, D. Synthesis 2013, 45,2998.
|
|
(c) Zhan, D.; Li, T.; Zhang, X.; Dai, C.; Wei, H.; Zhang, Y.; Zeng, Q. Synth. Commun. 2013, 43,2493.
|
|
(d) Sharif, M.; Opalach, J.; Langer, P.; Beller, M.; Wu, X.-F. RSC Adv. 2014, 4,8.
|
|
(e) Juvale, K.; Wiese, M. Bioorg. Med. Chem. Lett. 2012, 22,6766.
|
|
(f) Jia, F.-C.; Zhou, Z.-W.; Xu, C.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2016, 18,2942.
|
|
(g) Shang, Y.-H.; Fan, L.-Y.; Li, X.-X.; Liu, M.-X. Chin. Chem. Lett. 2015, 26,1355.
|
|
(h) Cheng, R.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis 2013, 45,2998.
|
|
[11] |
(a) Zhang, Z.; Wang, M.; Zhang, C.; Zhang, Z.; Lu, J.; Wang, F. Chem. Commun. 2015, 51,9205.
|
(b) Zheng, Y.; Bian, M.; Deng, X.-Q.; Wang, S.-B.; Quan, Z.-S. Arch. Pharm. Chem. Life Sci. 2013, 346,119.
|
|
(c) Du, Y.; Zhao, K.; Cheng, R.; Guo, T.; & Zhang-Negrerie, D. Synthesis 2013, 45,2998.
|
|
[12] |
Bakavoli, M.; Sabzevari, O.; Rahimizadeh, M. Chin. Chem. Lett. 2007, 18,1466.
|
[13] |
(a) Majumdar, B.; Sarma, D.; Jain, S.; Sarma, T. K. Adv. Synth. Catal. 2013, 355,2308.
|
(b) Dandia, A.; Sharma, R.; Indora, A.; Parewa, V. ChemistrySelect 2018, 3,8285.
|
|
(c) Sun, J.; Tao, T.; Xu, D.; Cao, H.; Kong, Q.; Wang, X.; Yun, L.; Zhao, J.; Wang, Y.; Pan, Y. Tetrahedron Lett. 2018, 59,2099.
|
|
(d) Hu, Y.; Chen, L.; Li, B. RSC Adv. 2016, 6,65196.
|
|
(e) Oveisi, A. R.; Khorramabadizad, A.; Daliran, S. RSC Adv. 2016, 6,1136.
|
|
(f) Zhao, D.; Zhou, Y.-R.; Shen, Q.; Li, J.-X. RSC Adv. 2014, 4,6486.
|
|
(g) Li, F.; Lu, L.; Liu, P. C. Org. Lett. 2016, 18,2580.
|
|
Ding, G.; Wang, Z.; Yin, Z.; Yue, G. Chin. J. Org. Chem. 2016, 36,43(in Chinese).
|
|
(丁刚, 王泽宇, 殷中琼, 乐贵洲, 有机化学, 2016, 36,43.)
|
|
[14] |
Zhou, J. G.; Fang, J. J. Org. Chem. 2011, 76,7730.
|
[15] |
Siddiki, S. M. A. H.; Kon, K.; Touchy, A. S.; Shimizua, K. Catal. Sci. Technol. 2014, 4,1716.
|
[16] |
(a) Wu, X.-F.; Oschatz, S.; Block, A.; Spannenberg, A.; Langer, P. Org. Biomol. Chem. 2014, 12,1865.
|
(b) Tang, L.; Zhao, X.; Zou, G.; Zhou, Y.; Yang, X. Asian J. Org. Chem. 2016, 5,335.
|
|
[17] |
Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Cao, H.; Zhang, X.; Xu, Q. ChemSusChem 2019, 12,3043.
|
[18] |
(a) Adeli, Y.; Huang, K.; Liang, Y.; Jiang, Y.; Liu, J.; Song, S.; Zeng, C.-C.; Jiao, N. ACS Catal. 2019, 9,2063.
|
(b) Zheng, M.-W.; Yuan, X.; Cui, Y.-S.; Qiu, J.-K.; Li, G.; Guo, K. Org. Lett. 2018, 20,7784.
|
|
(c) Singh, V. K.; Dubey, R.; Upadhyay, A.; Sharma, L. K.; Singh, R. K. P. Tetrahedron Lett. 2017, 58,4227.
|
|
(d) Cardoso, D. S. P.; Šljukić, B.; Santos, D. M. F.; Sequeira, C. A. C. Org. Process Res. Dev. 2017, 21,1213.
|
|
(e) Röse, P.; Emge, S.; König, C. A.; Hilt, G. Adv. Synth. Catal. 2017, 359,1358.
|
|
(f) Huang, P.; Wang, P.; Wang, S.; Tang, S.; Lei, A. Green Chem. 2018, 20,4870.
|
|
(g) Chen, J.-Y.; Wu, H.-Y.; Gui, Q.-W.; Han, X.-R.; Wu, Y.; Du, K.; Cao, Z.; Lin, Y.-W.; He, W.-M. Org. Lett. 2020, 22,2206.
|
|
(h) Li, L.; Xue, M.; Yan, X.; Liu, W.; Xu, K.; Zhang, S. Org. Biomol. Chem. 2018, 16,4615.
|
|
[19] |
(a) Shao, X.; Tian, L.; Wang, Y. Eur. J. Org. Chem. 2019, 2019 4089.
|
(b) Yu, Y.; Yuan, Y.; Liu, H.; He, M.; Yang, M.; Liu, P.; Yu, B.; Dong, X.; Lei, A. Chem. Commun. 2019, 55,1809.
|
|
(c) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, 57,5594.
|
|
(d) Hou, Z.-W.; Mao, Z.-Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Angew. Chem. Int. Ed. 2018, 57,1636.
|
|
(e) Yang, Z.; Zhang, J.; Hu, L.; Li, A.; Li, L.; Liu, K.; Yang, T.; Zhou, C. J. Org. Chem. 2020, 85,5952.
|
|
(f) Song, T.; Ren, P.; Ma, Z.; Xiao, J.; Yang, Y. ACS Sustainable Chem. Eng. 2020, 8,267.
|
|
[20] |
Xu, Z.; Zheng, Y.; Wang, Z.; Shao, X.; Tian, L.; Wang, Y. Chem. Commun. 2019, 55,15089.
|
[21] |
(a) Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30,2287.
|
(b) Peng, S.; Hu, D.; Hu, J.-L.; Lin, Y.-W.; Tang, S.-S.; Tang, H.-S.; He, J.-Y.; Cao, Z.; He, W.-M. Adv. Synth. Catal. 2019, 361,5721.
|
|
(c) Yang, J.; Fu, T.; Long, Y.; Zhou, X. G. Chin. J. Org. Chem. 2017, 37,1111(in Chinese).
|
|
(杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37,1111.)
|
|
(d) Luo, F. H.; Long, Y.; Li, Z. K.; Zhou, X. G. Acta Chim. Sinica 2016, 74,805(in Chinese).
|
|
(罗飞华, 龙洋, 李正凯, 周向葛, 化学学报, 2016, 74,805.)
|
|
(e) Pradhan, T. R.; Park, J. K. Adv. Synth. Catal. 2020, 362,4833.
|
|
[22] |
(a) Ke, F.; Xu, Y.; Zhu, S.; Lin, X.; Chen, L.; Zhou, S.; Su, H. Green Chem. 2019, 21,4329.
|
(b) Ke, F.; Zhang, P.; Xu, Y.; Lin, X.; Lin, J.; Lin, C.; Xu, J. Synlett 2018, 29,2722.
|
|
(c) Ke, F.; Liu, C.; Zhang, P.; Xu, J.; Chen, X. Synth. Commun. 2018, 48,3089.
|
|
[23] |
(a) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140,11487.
|
(b) Lin, D.-Z.; Lai, Y.-L.; Huang, J.-M. ChemElectroChem 2019, 6,4188.
|
|
(c) Liu, Z.; Zeng, L.-Y.; Li, C.; Yang, F.; Qiu, F.; Liu, S.; Xi, B. Molecules 2018, 23,2325.
|
|
(d) Kumar, M.; Richa
|
|
(e) Hu, Y.; Li, S.; Li, H.; Li, Y.; Li, J.; Duanmu, C.; Li, B. Org. Chem. Front. 2019, 6,2744.
|
|
(f) Cao, L.; Huo, H.; Zeng, H.; Yu, Y.; Lu, D.; Gong, Y. Adv. Synth. Catal. 2018, 360,4764.
|
|
[24] |
(a) Chen, X.; Qi, H.; Wu, S.; Liu, L.; Wen, J.; Li, W.; Guo, F.; Bian, Y.; Li, J. Heterocyles 2017, 94,86.
|
(b) Parua, S.; Das, S.; Sikari, R.; Sinha, S.; Paul, N. D. J. Org. Chem. 2017, 82,7165.
|
|
(c) Das, S.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandao, P.; Paul, N. D. J. Org. Chem. 2019, 84,10160.
|
|
(d) Rao, K. R.; Mekala, R.; Raghunadh, A.; Meruva, S. B.; Kumar, S. P.; Kalita, D.; Laxminarayana, E.; Prasad, B.; Pal, M. RSC Adv. 2015, 5,61575.
|
|
(e) Duan, C.; Jia, J.; Zhu, R.; Wang, J. J. Heterocycl. Chem. 2012, 49,865.
|
|
(f) Latha, G.; Devarajan, N.; Suresh, P. ChemistrySelect 2020, 5,10041.
|
|
[25] |
(a) López, S.; Romero, A.; Salazar, J. Synthesis 2013, 45,2043.
|
(b) Hudwekar, A. D.; Reddy, G. L.; Verma, P. K.; Gupta, S.; Vishwakarma, R. A.; Sawant, S. D. ChemistrySelect 2017, 2,4963.
|
|
(c) Tian, X.; Song, L.; Li, E.; Wang, Q.; Yu, W.; Chang, J. RSC Adv. 2015, 5,62194.
|
[1] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[2] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[3] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[4] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[5] | 钟赟哲, 陈颖, 俞磊, 周宏伟. 电化学介导羧酸与醇的酯化反应[J]. 有机化学, 2023, 43(8): 2855-2863. |
[6] | 陈乡萍, 孟晨湘, 李梦娜, 楚尚敏, 朱欣欣, 许凯, 刘澜涛, 王涛, 张凤华, 李飞. 水相中抗坏血酸钠促进铁催化合成含硫芳香伯胺化合物[J]. 有机化学, 2023, 43(8): 2800-2807. |
[7] | 马献涛, 闫晓雨, 朱影影, 牛双林, 王喻璇, 袁超. 水促进下杂芳基硫醚的绿色合成[J]. 有机化学, 2023, 43(6): 2136-2142. |
[8] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[9] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[10] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[11] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[12] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[13] | 魏文婷, 李壮壮, 李婉迪, 李嘉琪, 石先莹. 纯水及空气中芳香羧酸和丙烯酸酯氧化偶联构筑苯酞的绿色方法[J]. 有机化学, 2023, 43(3): 1177-1186. |
[14] | 王维, 张哲宇, 张雪, 于海丰, 罗辉, 霍东月, 徐玉澎, 赵晓波. 多取代2,3-二氢-4-吡啶酮的水相合成[J]. 有机化学, 2023, 43(2): 742-750. |
[15] | 李奇阳, 张海燕, 刘文博. 无过渡金属参与的碳硅键构筑方法研究进展[J]. 有机化学, 2023, 43(10): 3470-3490. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||