有机化学 ›› 2021, Vol. 41 ›› Issue (6): 2310-2318.DOI: 10.6023/cjoc202010010 上一篇 下一篇
研究论文
收稿日期:
2020-10-09
修回日期:
2020-12-28
发布日期:
2021-03-25
通讯作者:
刘巨艳
基金资助:
Received:
2020-10-09
Revised:
2020-12-28
Published:
2021-03-25
Contact:
Juyan Liu
Supported by:
文章分享
发展了一种对环境友好的乳酸促进的酰胺与胺的氨解的新方法, 该方法能够成功合成一系列芳香、脂肪类酰胺和脲的衍生物. 该方法最显著的特征是催化剂廉价易得、无挥发性溶剂、底物转化率高及产物提纯操作简单.
刘巨艳, 赵聪颖. 乳酸催化的酰胺与胺的氨解反应[J]. 有机化学, 2021, 41(6): 2310-2318.
Juyan Liu, Congying Zhao. Lactic Acid-Catalyzed Transamidation Reactions of Carboxamides with Amines[J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2310-2318.
Entry | Catalyst/additive or solvent | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | None | 24 | 40 | Trace |
2 | Citric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 50 |
3 | D/L-Malic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 53 |
4 | D/L-Tartaric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 46 |
5 | Gluconic acid (10 mol%) | 10 | 40 | 64 |
6 | Ethyl lactate (10 mol%)/H2O (1 equiv.) | 10 | 40 | 76 |
7 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 95 |
8 | (±)-Lactic acid (10 mol%)/H2O (2 mL) | 10 | 40 | 61 |
9 | (±)-Lactic acid (10 mol%)/Toluene (2 mL) | 10 | 40 | 49 |
10 | (±)-Lactic acid (10 mol%)/DMF (2 mL) | 10 | 40 | 56 |
11 | (±)-Lactic acid (10 mol%)/DMSO (2 mL) | 10 | 40 | 59 |
12 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 25 | 30 |
13 | (±)-Lactic acid (20 mol%)/H2O (1 equiv.) | 10 | 40 | 90 |
14 | H2O (1 equiv.) | 10 | 40 | <5 |
Entry | Catalyst/additive or solvent | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | None | 24 | 40 | Trace |
2 | Citric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 50 |
3 | D/L-Malic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 53 |
4 | D/L-Tartaric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 46 |
5 | Gluconic acid (10 mol%) | 10 | 40 | 64 |
6 | Ethyl lactate (10 mol%)/H2O (1 equiv.) | 10 | 40 | 76 |
7 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 95 |
8 | (±)-Lactic acid (10 mol%)/H2O (2 mL) | 10 | 40 | 61 |
9 | (±)-Lactic acid (10 mol%)/Toluene (2 mL) | 10 | 40 | 49 |
10 | (±)-Lactic acid (10 mol%)/DMF (2 mL) | 10 | 40 | 56 |
11 | (±)-Lactic acid (10 mol%)/DMSO (2 mL) | 10 | 40 | 59 |
12 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 25 | 30 |
13 | (±)-Lactic acid (20 mol%)/H2O (1 equiv.) | 10 | 40 | 90 |
14 | H2O (1 equiv.) | 10 | 40 | <5 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1 | | | | 5 | 80 | 95 |
2 | | | | 7 | 150 | 91 |
3 | | | | 4 | 75 | 96 |
4 | | | | 10 | 40 | 95 |
5 | | | | 15 | 100 | 79 |
6 | | | | 10 | 150 | 87 |
7 | | | | 19 | 100 | 83 |
8 | | | | 19 | 100 | 84 |
9 | | | | 19 | 100 | 91 |
10 | | | | 12.5 | 40 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
11 | | | | 8 | 110 | 97 |
12 | | | | 2 | 140 | 95 |
13 | | | | 10 | 110 | 81 |
14 | | | | 6 | 140 | 89 |
15 | | | | 14 | 140 | 88 |
16 | | | | 16 | 140 | 87 |
17 | | | | 20 | 150 | 82 |
18 | | | | 14 | 120 | 90 |
19 | | | | 13.5 | 140 | 94 |
20 | | | | 11 | 130 | 97 |
21 | | | | 6 | 140 | 88 |
22 | | | | 10 | 140 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
23 | | | | 12.5 | 140 | 72 |
24 | | | | 14 | 140 | 78 |
25 | | | | 12 | 140 | 76 |
26 | | | | 12 | 140 | 73 |
27 | | | — | 12 | 140 | — |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1 | | | | 5 | 80 | 95 |
2 | | | | 7 | 150 | 91 |
3 | | | | 4 | 75 | 96 |
4 | | | | 10 | 40 | 95 |
5 | | | | 15 | 100 | 79 |
6 | | | | 10 | 150 | 87 |
7 | | | | 19 | 100 | 83 |
8 | | | | 19 | 100 | 84 |
9 | | | | 19 | 100 | 91 |
10 | | | | 12.5 | 40 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
11 | | | | 8 | 110 | 97 |
12 | | | | 2 | 140 | 95 |
13 | | | | 10 | 110 | 81 |
14 | | | | 6 | 140 | 89 |
15 | | | | 14 | 140 | 88 |
16 | | | | 16 | 140 | 87 |
17 | | | | 20 | 150 | 82 |
18 | | | | 14 | 120 | 90 |
19 | | | | 13.5 | 140 | 94 |
20 | | | | 11 | 130 | 97 |
21 | | | | 6 | 140 | 88 |
22 | | | | 10 | 140 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
23 | | | | 12.5 | 140 | 72 |
24 | | | | 14 | 140 | 78 |
25 | | | | 12 | 140 | 76 |
26 | | | | 12 | 140 | 73 |
27 | | | — | 12 | 140 | — |
Entry | Catalyst (loading) | Time/h | Yielda/% | Ref. |
---|---|---|---|---|
1 | Lactic acid (10 mol%) | 11 | 97 | — |
2 | H2NOH•HCl (10 mol%) | 11 | 20 | [18] |
3 | Sulfated tungstate (10 mol%) | 11 | 86 | [15] |
4 | B(OH)3 (10 mol%) | 11 | 34 | [17] |
5 | Fe(NO3)3•9H2O (10 mol%) | 11 | 46 | [14] |
6 | Benzoic acid (10 mol%) | 11 | 13 | [19] |
7 | L-Proline (10 mol%) | 11 | 82 | [20] |
8 | Benzotriazole (10 mol%) | 11 | 83 | [21] |
9 | Chitosan (10 mol%) | 11 | NR | [22] |
Entry | Catalyst (loading) | Time/h | Yielda/% | Ref. |
---|---|---|---|---|
1 | Lactic acid (10 mol%) | 11 | 97 | — |
2 | H2NOH•HCl (10 mol%) | 11 | 20 | [18] |
3 | Sulfated tungstate (10 mol%) | 11 | 86 | [15] |
4 | B(OH)3 (10 mol%) | 11 | 34 | [17] |
5 | Fe(NO3)3•9H2O (10 mol%) | 11 | 46 | [14] |
6 | Benzoic acid (10 mol%) | 11 | 13 | [19] |
7 | L-Proline (10 mol%) | 11 | 82 | [20] |
8 | Benzotriazole (10 mol%) | 11 | 83 | [21] |
9 | Chitosan (10 mol%) | 11 | NR | [22] |
[1] |
Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4,2337.
|
[2] |
Constable, D. J. C. Green Chem. 2007, 9,411.
|
[3] |
Wildman, S. A.; Crippen, G. M. J. Chem. Inf. Comput. Sci. 1999, 39,868.
|
[4] |
Bhattacharya, S. K.; Andrews, K.; Beveridge, R.; Cameron, K. O.; Chen, C.; Dunn, M.; Fernando, D. P.; Gao, H.; Hepworth, D.; Jackson, V. M.; Khot, V.; Kong, J.; Kosa, R. E.; Lapham, K.; Loria, P. M.; Londregan, A. T.; McClure, K. F.; Orr, S. T. M.; Patel, J.; Rose, C.; Saenz, J.; Stock, I. A.; Storer, G.; Van Volkenburg, M.; Vrieze, D.; Wang, G.; Xiao, J.; Zhang, Y. ACS Med. Chem. Lett. 2014, 5,474.
|
[5] |
McCoull, W.; Barton, P.; Brown, A.; Bowker, S.; Cameron, J.; Clarke, D.; Davies, R.; Dossetter, A.; Ertan, A.; Fenwick, M.; Green, C.; Holmes, J.; Martin, N.; Masters, D.; Moore, J.; Newcombe, N.; Newton, C.; Pointon, H.; Robb, G. R.; Sheldon, C.; Stokes, S.; Morgan, D. J. Med. Chem. 2014, 57,6128.
|
[6] |
(a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61,10827.
|
(b) Larock, R. C. Comprehensive Organic Transformations, Wiley-VCH, Weinheim, 1999.
|
|
(c) Bailey, P. D.; Collier, I. D.; Morgan, K. M. Comprehensive Organic Functional Group Transformations, Vol. 5, Elsevier, Cambridge, 1995, p.257.
|
|
(d) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38,606.
|
|
(e) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Process Res. Dev. 2016, 20,140.
|
|
[7] |
(a) Cossy, J.; Pale-Grosdemange, C. Tetrahedron Lett. 1989, 30,2771.
|
(b) Gooben, L. J.; Ohlmann, D. M.; Lange, P. P. Synthesis 2009,160.
|
|
(c) Comerford, J. W.; Clark, J. H.; Macquarrie, D. J.; Breeden, S. W. Chem. Commun. 2009,2562.
|
|
(d) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61,4196.
|
|
(e) Maki, T.; Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63,8645.
|
|
(f) Arnold, K.; Davies, B.; Herault, D.; Whiting, A. Angew. Chem., nt. Ed. 2008, 47,2673.
|
|
(g) Hosseini-Sarvari, M.; Sodagar, E.; Doroodmand, M. M. J. Org. Chem. 2011, 76,2853.
|
|
(h) Komura, K.; Nakano, Y.; Koketsu, M. Green Chem. 2011, 13,828.
|
|
(i) Ojeda-Porras, A.; Gamba-Sánchez, D. J. Org. Chem. 2016, 81,11548.
|
|
[8] |
(a) Beste, L. F.; Houtz, R. C. J. Polym. Sci., Part A: Polym. Chem. 1952, 8,395.
|
(b) Miller, I. K. J. Polym. Sci., Polym. Chem. Ed. 1976, 14,1403.
|
|
(c) McKinney, R. J. US 5302756, 1994.
|
|
(d) McKinney, R. J. US 5395974, 1995.
|
|
(e) Bon, E.; Bigg, D. C. H.; Bertrand, G. J. Org. Chem. 1994, 59,4035.
|
|
(f) Suggs, J. W.; Pires, R. M. Tetrahedron Lett. 1997, 38,2227.
|
|
[9] |
(a) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131,10003.
|
(b) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Cui, Q.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130,647.
|
|
(c) Kissounko, D. A.; Hoerter, J. M.; Guzei, L. A.; Cui, Q.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129,1776.
|
|
(d) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128,5177.
|
|
(e) Kissounko, D. A.; Guzei, L. A.; Gellman, S. H.; Stahl, S. S. Organometallics 2005, 24,5208.
|
|
(f) Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125,3422.
|
|
[10] |
Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc. 2006, 128,16406.
|
[11] |
Zhang, M.; Imm, S.; Neubert, B. S. L.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2012, 51,3905.
|
[12] |
Shi, M.; Cui, S. C. Synth. Commun. 2005, 35,2847.
|
[13] |
Tamura, M.; Tonomura, T.; Shimizu, K.; Satsuma, A. Green Chem. 2012, 14,717.
|
[14] |
Becerra-Figueroa, L.; Ojeda-Porras, A.; Gamba-Sánchez, D. J. Org. Chem. 2014, 79,4544.
|
[15] |
Pathare, S. P.; Jain, A. K. H.; Akamanchi, K. G. RSC Adv. 2013, 3,7697.
|
[16] |
Ali, M. A.; Siddiki, S. M. A. H.; Kon, K.; Shimizu, K.-I. Tetrahedron Lett. 2014, 55,1316.
|
[17] |
Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14,3202.
|
[18] |
Allen, C. L.; Atkinson, B. N.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51,1383.
|
[19] |
Wu, J.-W.; Wu, Y.-D.; Dai, J.-J.; Xu, H.-J. Adv. Synth. Catal. 2014, 356,2429.
|
[20] |
(a) Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013, 15,1496.
|
(b) Yang, X.; Fan, L. L.; Xue, Y. RSC Adv. 2014, 4,30108.
|
|
[21] |
Nguyen, T. B.; Ermolenko, L.; Dau, M. E. T. H.; Al-Mourabit, A. Heterocycles 2014, 88,403.
|
[22] |
Nageswara, Rao, S.; Chandra, Mohan, D.; Adimurthy, S. Green Chem. 2014, 16,4122.
|
[23] |
Dusselier, M.; Van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B. F. Energy Environ. Sci. 2013, 6,1415.
|
[24] |
Maki-Arvela, P.; Simakova, I. L.; Salmi, T.; Murzin, D. Y. Chem. Rev. 2014, 114,1909.
|
[25] |
Li, L.; Fan, E.; Guan, Y.; Zhang, X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. ACS Sustainable Chem. Eng. 2017, 5,5224.
|
[26] |
Lan, K.; Xu, S.; Li, J.; Hu, C. ACS Omega 2019, 4,10571.
|
[27] |
Han, X.; Li, L.; Wei, C.; Zhang, J.; Bao, J. J. Agric. Food Chem. 2019, 67,7082.
|
[28] |
Lamers, B. A. G.; Genabeek, B.; Hennissen, J.; de Waal, B. F. M.; Palmans, A. R. A.; Meijer, E. W. Macromolecules 2019, 52,1200.
|
[29] |
Yang, J.; Tana, J.-N.; Gu, Y. Green Chem. 2012, 14,3304.
|
[30] |
Fatahpour, M.; Hazeri, N.; Maghsoodlou, M. T.; Lashkari, M. J. Chin. Chem. Soc. 2017, 64,1071.
|
[31] |
(a) Zhao, C. Y.; Liu, J. Y.; Wang, Y.; Zhao, X. J.; Yuan, B.; Yue, M. M. Synth. Commun. 2014, 44,827.
|
(b) Yue, M. M.; Liu, J. Y.; Wang, Y.; Yuan, B. Chin. J. Org. Chem. 2014, 34,190(in Chinese).
|
|
(岳闽敏, 刘巨艳, 王英, 袁斌, 有机化学, 2014, 34,190.)
|
|
(c) Zhang, L. J.; Liu, J. Y.; Wang, Y. Chin. J. Org. Chem. 2013, 33,339(in Chinese).
|
|
(张丽君, 刘巨艳, 王英, 有机化学, 2013, 33,339.)
|
|
(d) Huang, H. J.; Liu, J. Y.; Ma, E. Z.; Cao, Y. Y. Chin. J. Org. Chem. 2015, 35,2372(in Chinese).
|
|
(黄海静, 刘巨艳, 马恩忠, 曹映玉, 有机化学, 2015, 35,2372.)
|
|
(e) Liu, J. Y.; Huang, H. J.; Jiao, D. Q. Chin. J. Org. Chem. 2017, 37,1808(in Chinese).
|
|
(刘巨艳, 黄海静, 焦德全, 有机化学, 2017, 37,1808.)
|
|
(f) Fang, Z. X.; Liu, J. Y.; Qiao, Y. H. Chin. J. Org. Chem. 2018, 38,1985(in Chinese).
|
|
(房智兴, 刘巨艳, 乔艳红, 有机化学, 2018, 38,1985.)
|
|
[32] |
(a) Fuentes de Arriba, A.L.; Seisdedos, D. G.; Simons, L.; Alcazar, V.; Raposo, C.; Moran, J. R. J. Org. Chem. 2010, 75,8303.
|
(b) Thomas, M.; Clarhaut, J.; Tranoy-Opalinski, I.; Gesson, J. P.; Roche, J.; Rapot, S. Bioorg. Med. Chem. 2008, 16,8109.
|
|
(c) Willis, M. C.; Snell, R. H.; Fletcher, A. J.; Woodward, R. L. Org. Lett. 2006, 8,5089.
|
[1] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[2] | 陶苏艳, 项紫欣, 白俊杰, 万潇, 万小兵. 亚硝酸叔丁酯参与的酰胺水解反应[J]. 有机化学, 2024, 44(2): 550-560. |
[3] | 江港钟, 林嘉欣, 鲍晓光, 万小兵. 亚硝酸异戊酯活化伯磺酰胺制备磺酰溴与磺酰氯[J]. 有机化学, 2024, 44(2): 533-549. |
[4] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[5] | 李洋, 董亚楠, 李跃辉. 经由N-硼基酰胺中间体的酰胺高效转化合成腈类化合物[J]. 有机化学, 2024, 44(2): 638-643. |
[6] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[7] | 黄志友, 杨平, 何波, 欧文霞, 袁思雨. 吗啉磺酰胺化合物的设计、合成及其抑制大豆萌芽活性的研究[J]. 有机化学, 2024, 44(1): 309-315. |
[8] | 陈珊, 陈志林, 胡琼, 蒙艳双, 黄悦, 陶萍芳, 卢丽如, 黄国保. 含双硫脲基团分子钳在非极性溶剂中识别中性分子[J]. 有机化学, 2024, 44(1): 277-281. |
[9] | 徐利军, 李宗军, 韩福社, 高翔. N,N-二甲基甲酰胺促进的富勒烯稠合噁唑啉衍生物的合成[J]. 有机化学, 2024, 44(1): 242-250. |
[10] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[11] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[12] | 张俊杰, 徐学涛. (S)-(–)-Xylopinine和(S)-(+)-Laudanosine的不对称合成[J]. 有机化学, 2023, 43(9): 3297-3303. |
[13] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
[14] | 李阳, 袁锦鼎, 赵頔. 低共熔溶剂1,3-二甲基脲/L-(+)-酒石酸中(E)-2-苯乙烯基喹啉-3-羧酸类衍生物的绿色合成[J]. 有机化学, 2023, 43(9): 3268-3276. |
[15] | 雷容超, 兰文捷, 李梦竹, 傅滨. 苯并磺内酰胺联吡唑化合物的简便合成[J]. 有机化学, 2023, 43(7): 2553-2560. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||