有机化学 ›› 2021, Vol. 41 ›› Issue (8): 3002-3014.DOI: 10.6023/cjoc202103022 上一篇 下一篇
综述与进展
收稿日期:
2021-03-11
修回日期:
2021-04-11
发布日期:
2021-05-08
通讯作者:
许家喜
基金资助:
Received:
2021-03-11
Revised:
2021-04-11
Published:
2021-05-08
Contact:
Jiaxi Xu
Supported by:
文章分享
[3,3] σ迁移反应作为有机化学中的经典反应, 自发现以来, 反应类型不断扩大, 且一直广泛应用于有机与药物合成等领域. 因为羟胺衍生物的N—O键强度较弱, 较易断裂, [3,3] σ迁移反应在较为温和的条件下即可进行, 得到含有羟基和氨基的复杂分子, 近年来, 该类反应引起越来越多的关注. 综述了羟胺衍生物的[3,3] σ迁移反应, 包括N-芳
张广宇, 许家喜. 羟胺衍生物的[3,3] σ迁移反应及其应用[J]. 有机化学, 2021, 41(8): 3002-3014.
Guangyu Zhang, Jiaxi Xu. [3,3] Sigmatropic Shifts and Applications of Hydroxylamine Derivatives[J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3002-3014.
[1] |
Sweeney, J. B. Chem. Soc. Rev. 2009, 38, 1027.
doi: 10.1039/b604828p pmid: 19421580 |
[2] |
Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Chem. Soc. Rev. 2009, 38, 3133.
doi: 10.1039/b901177n |
[3] |
Martín Castro, A. M. Chem. Rev. 2004, 104, 2939.
pmid: 15186185 |
[4] |
Tejedor, D.; Mendez-Abt, G.; Cotos, L.; Garcia-Tellado, F. Chem. Soc. Rev. 2013, 42, 458.
doi: 10.1039/c2cs35311c pmid: 23034723 |
[5] |
Cope, A. C.; Hardy, E. M. J. Am. Chem. Soc. 1940, 62, 441.
doi: 10.1021/ja01859a055 |
[6] |
Malinowski, J. T.; Malow, E. J.; Johnson, J. S. Chem. Commun. 2012, 48, 7568.
doi: 10.1039/c2cc33401a |
[7] |
Chen, B.; Mapp, A. K. J. Am. Chem. Soc. 2004, 126, 5364.
pmid: 15113200 |
[8] |
Yanagi, T.; Otsuka, S.; Kasuga, Y.; Fujimoto, K.; Murakami, K.; Nogi, K.; Yorimitsu, H.; Osuka, A. J. Am. Chem. Soc. 2016, 138, 14582.
doi: 10.1021/jacs.6b10278 |
[9] |
Huang, X.; Maulide, N. J. Am. Chem. Soc. 2011, 133, 8510.
doi: 10.1021/ja2031882 |
[10] |
Kaldre, D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; Gonzalez, L.; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 2212.
doi: 10.1002/anie.201610105 |
[11] |
Boekelheide, V.; Linn, W. J. Am. Chem. Soc. 1954, 76, 1286.
doi: 10.1021/ja01634a026 |
[12] |
Lagiakos, H. R.; Aguilar, M.-I.; Perlmutter, P. J. Org. Chem. 2009, 74, 8001.
doi: 10.1021/jo901717a |
[13] |
Figueira, V. B.; Esqué, A. G.; Varala, R.; González-Bello, C.; Prabhakar, S.; Lobo, A. M. Tetrahedron Lett. 2010, 51, 2029.
|
[14] |
Yang, Z. H.; Hou, S. L.; He, W.; Cheng, B. X.; Jiao, P.; Xu, J. X. Tetrahedron 2016, 72, 2186.
doi: 10.1016/j.tet.2016.03.019 |
[15] |
Hou, S. L.; Li, X. Y.; Xu, J. X. Org. Biomol. Chem. 2014, 12, 4952.
doi: 10.1039/C4OB00080C |
[16] |
Xu, J. X. Curr. Org. Synth. 2017, 14, 511.
doi: 10.2174/1570179413666161021103952 |
[17] |
Shang, L.; Chang, Y. H.; Luo, F.; He, J. N.; Huang, X.; Zhang, L.; Kong, L. C.; Li, K. X.; Peng, B. J. Am. Chem. Soc. 2017, 139, 4211.
doi: 10.1021/jacs.7b00969 pmid: 28245112 |
[18] |
Liu, G. Y.; Hou, S. L.; Xu, J. X. Org. Biomol. Chem. 2019, 17, 10088.
doi: 10.1039/C9OB02202C |
[19] |
Chen, M. Y.; Liang, Y. C.; Dong, T. T.; Liang, W. J.; Liu, Y. P.; Zhang, Y. G.; Huang, X.; Kong, L. C.; Wang, J. X.; Peng, B. Angew. Chem., Int. Ed. 2021, 60, 2339.
doi: 10.1002/anie.v60.5 |
[20] |
Sousa, E. S. F. C.; Van, N. T.; Wengryniuk, S. E. J. Am. Chem. Soc. 2020, 142, 64.
doi: 10.1021/jacs.9b11282 |
[21] |
Hori, M.; Guo, J. D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2018, 57, 4663.
doi: 10.1002/anie.v57.17 |
[22] |
Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 1989, 30, 2129.
doi: 10.1016/S0040-4039(01)93730-X |
[23] |
Bosco, M.; Dalpozzo, R.; Bartoli, G.; Palmieri, G.; Petrini, M. J. Chem. Soc., Perkin Trans. 2 1991, 657.
|
[24] |
Bartoli, G.; Dalpozzo, R.; Nardi, M. Chem. Soc. Rev. 2014, 43, 4728.
doi: 10.1039/C4CS00045E |
[25] |
Yuan, H. R.; Guo, L. R.; Liu, F. T.; Miao, Z. C.; Feng, L.; Gao, H. Y. ACS Catal. 2019, 9, 3906.
doi: 10.1021/acscatal.9b00470 |
[26] |
Lovato, K.; Bhakta, U.; Ng, Y. P.; Kürti, L. Org. Biomol. Chem. 2020, 18, 3281.
doi: 10.1039/D0OB00611D |
[27] |
Chan, D. M.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
doi: 10.1016/S0040-4039(98)00503-6 |
[28] |
Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295.
doi: 10.1016/S0040-4039(00)78044-0 |
[29] |
Carreira, E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649.
doi: 10.1021/ja00117a049 |
[30] |
Singer, R. A.; Carreira, E. M. J. Am. Chem. Soc. 1995, 117, 12360.
doi: 10.1021/ja00154a049 |
[31] |
Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Sibi, M. P.; Sivaguru, J. Angew. Chem., Int. Ed. 2014, 53, 5604.
doi: 10.1002/anie.v53.22 |
[32] |
Bianchi, L.; Dell'Erba, C.; Maccagno, M.; Mugnoli, A.; Novi, M.; Petrillo, G.; Severi, E.; Tavani, C. Eur. J. Org. Chem. 2004, 2004, 3566.
doi: 10.1002/(ISSN)1099-0690 |
[33] |
Gao, H.; Ess, D. H.; Yousufuddin, M.; Kurti, L. J. Am. Chem. Soc. 2013, 135, 7086.
doi: 10.1021/ja400897u |
[34] |
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.
doi: 10.1007/s00214-007-0310-x |
[35] |
Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
doi: 10.1021/ar700111a |
[36] |
Guo, L.; Liu, F.; Wang, L.; Yuan, H.; Feng, L.; Kurti, L.; Gao, H. Org. Lett. 2019, 21, 2894.
doi: 10.1021/acs.orglett.9b00927 |
[37] |
Forkosh, H.; Vershinin, V.; Reiss, H.; Pappo, D. Org. Lett. 2018, 20, 2459.
doi: 10.1021/acs.orglett.8b00800 pmid: 29608314 |
[38] |
Patel, D. C.; Breitbach, Z. S.; Woods, R. M.; Lim, Y.; Wang, A.; Foss, F. W., Jr.; Armstrong, D. W. J. Org. Chem. 2016, 81, 1295.
doi: 10.1021/acs.joc.5b02663 |
[39] |
Yuan, H.; Du, Y.; Liu, F.; Guo, L.; Sun, Q.; Feng, L.; Gao, H. Chem. Commun. 2020, 56, 8226.
doi: 10.1039/D0CC02919J |
[40] |
Zhang, J. W.; Qi, L. W.; Li, S. Y.; Xiang, S.-H.; Tan, B. Chin. J. Chem. 2020, 38, 1503.
doi: 10.1002/cjoc.v38.12 |
[41] |
Guo, L. R.; Liu, F. T.; Wang, L. Y.; Yuan, H. R.; Feng, L.; Lu, H. F.; Gao, H. Y. Org. Chem. Front. 2020, 9, 1077.
|
[42] |
Wang, M.; Liu, Y.; Wang, L. Y.; Lu, H.F; Feng, L.; Gao, H. Y. Adv. Synth. Catal. 2021, 363, 1733.
doi: 10.1002/adsc.v363.6 |
[43] |
Shirakawa, S.; Wu, X.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 14200.
doi: 10.1002/anie.201308237 |
[44] |
Lu, S.; Ng, S. V. H.; Lovato, K.; Ong, J. Y.; Poh, S. B.; Ng, X. Q.; Kurti, L.; Zhao, Y. Nat. Commun. 2019, 10, 3061.
doi: 10.1038/s41467-019-10940-4 |
[45] |
Lu, S.; Poh, S. B.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 11041.
|
[46] |
Yang, G.; Guo, D.; Meng, D.; Wang, J. Nat. Commun. 2019, 10, 3062.
doi: 10.1038/s41467-019-10878-7 |
[47] |
Lu, S.; Poh, S. B.; Rong, Z. Q.; Zhao, Y. Org. Lett. 2019, 21, 6169.
doi: 10.1021/acs.orglett.9b02425 |
[48] |
Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Prabhakaran, M. T.; Sibi, M. P.; Sivaguru, J. Adv. Synth. Catal. 2014, 356, 2763.
doi: 10.1002/adsc.201400677 |
[49] |
He, R. D.; Li, C. L.; Pan, Q. Q.; Guo, P.; Liu, X. Y.; Shu, X. Z. J. Am. Chem. Soc. 2019, 141, 12481.
doi: 10.1021/jacs.9b05224 |
[50] |
Son, J.; Reidl, T. W.; Kim, K. H.; Wink, D. J.; Anderson, L. L. Angew. Chem., Int. Ed. 2018, 57, 6597.
doi: 10.1002/anie.v57.22 |
[51] |
Chellat, M. F.; Riedl, R. Angew. Chem., Int. Ed. 2017, 56, 13184.
doi: 10.1002/anie.201708133 |
[52] |
Alshreimi, A. S.; Zhang, G.; Reidl, T. W.; Pena, R. L.; Koto, N. G.; Islam, S. M.; Wink, D. J.; Anderson, L. L. Angew. Chem., Int. Ed. 2020, 59, 15244.
doi: 10.1002/anie.v59.35 |
[53] |
Xu, J. X. Univ. Chem. 2006, 21(4), 40. (in Chinese)
|
(许家喜, 大学化学, 2006, 21(4), 40.)
|
|
[54] |
Singh, G. S.; Desta, Z. Y. Chem Rev. 2012, 112, 6104.
doi: 10.1021/cr300135y |
[55] |
Chan, S. T.; Pearce, A. N.; Januario, A. H.; Page, M. J.; Kaiser, M.; McLaughlin, R. J.; Harper, J. L.; Webb, V. L.; Barker, D.; Copp, B. R. J. Org. Chem. 2011, 76, 9151.
doi: 10.1021/jo201654h |
[56] |
Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
doi: 10.1002/(ISSN)1521-3773 |
[57] |
Ochiai, E. J. Org. Chem. 1953, 18, 534.
doi: 10.1021/jo01133a010 |
[58] |
(a) House, H. O.; Richey, F. A. J. Org. Chem. 1969, 34, 1430.
doi: 10.1021/jo01257a050 |
(b) Beshara, C. S.; Hall, A.; Jenkins, R. L.; Jones, T. C.; Parry, R. T.; Thomas, S. P.; Tomkinson, N. C. Chem. Commun. 2005, 1478.
|
|
[59] |
Kokuev, A. O.; Antonova, Y. A.; Dorokhov, V. S.; Golovanov, I. S.; Nelyubina, Y. V.; Tabolin, A. A.; Sukhorukov, A. Y.; Ioffe, S. L. J. Org. Chem. 2018, 83, 11057.
doi: 10.1021/acs.joc.8b01652 |
[60] |
Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2012, 8, 527.
doi: 10.1021/ct200866d |
[61] |
Breuning, M.; Häuser, T.; Tanzer, E.-M. Org. Lett. 2009, 11, 4032.
doi: 10.1021/ol901214n |
[62] |
Adam, W.; Boland, W.; Hartmann-Schreier, J.; Humpf, H.-U.; Lazarus, M.; Saffert, A.; Saha-Möller, C. R.; Schreier, P. J. Am. Chem. Soc. 1998, 120, 11044.
doi: 10.1021/ja981252r |
[63] |
Adam, W.; Lazarus, M.; Saha-Mǒller, C. R.; Schreier, P. Tetrahedron: Asymmetry 1996, 7, 2287.
|
[64] |
Takeda, N.; Arisawa, N.; Miyamoto, M.; Kobori, Y.; Shinada, T.; Miyata, O.; Ueda, M. Org. Chem. Front. 2019, 6, 3721.
doi: 10.1039/C9QO01109A |
[65] |
Verbrugghen, T.; Cos, P.; Maes, L.; Van Calenbergh, S. J. Med. Chem. 2010, 53, 5342.
doi: 10.1021/jm100211e pmid: 20568776 |
[66] |
Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem. Rev. 2014, 114, 9154.
doi: 10.1021/cr5002035 pmid: 25144792 |
[67] |
Hecker, S. J.; Erion, M. D. J. Med. Chem. 2008, 51, 2328.
doi: 10.1021/jm701260b pmid: 18237108 |
[68] |
Yang, Y.; Qu, C.; Chen, X.; Sun, K.; Qu, L.; Bi, W.; Hu, H.; Li, R.; Jing, C.; Wei, D.; Wei, S.; Sun, Y.; Liu, H.; Zhao, Y. Org. Lett. 2017, 19, 5864.
doi: 10.1021/acs.orglett.7b02852 |
[69] |
Ramirez, F.; Marecek, J. F. Synthesis 1985, 449.
|
[70] |
Koser, G. F.; Lodaya, J. S.; Ray, D. G.; Kokil, P. B. J. Am. Chem. Soc. 1988, 110, 2987.
doi: 10.1021/ja00217a058 |
[71] |
Khan, S.; Battula, S.; Ahmed, Q. N. Tetrahedron 2016, 72, 4273.
doi: 10.1016/j.tet.2016.05.067 |
[1] | 徐利军, 李宗军, 韩福社, 高翔. N,N-二甲基甲酰胺促进的富勒烯稠合噁唑啉衍生物的合成[J]. 有机化学, 2024, 44(1): 242-250. |
[2] | 魏芳, 余鑫, 肖强. 有机叠氮化合物参与的反应: C—N3基团保留的研究进展[J]. 有机化学, 2023, 43(4): 1365-1385. |
[3] | 张建涛, 邓雅文, 莫诺琳, 陈莲芬. 自由基介导的α,α-二芳基烯丙醇1,2-芳基迁移反应研究进展[J]. 有机化学, 2023, 43(2): 426-435. |
[4] | 潘康, 徐凡. 硅氨基镧化合物催化合成磷酸烯醇酯[J]. 有机化学, 2023, 43(12): 4261-4267. |
[5] | 胡朝明, 吴纪红, 吴晶晶, 吴范宏. 直接三氟甲硒基化反应研究进展[J]. 有机化学, 2023, 43(1): 36-56. |
[6] | 胡晶平, 陈文清, 蒋宇旸, 徐晶. Daphnezomines A和B的四环核心骨架合成[J]. 有机化学, 2023, 43(1): 171-177. |
[7] | 郭泽, 吴迪, 王丽丽, 段征. BF3•Et2O促进的双烯酮-酚重排合成具有聚集诱导发光(AIE)效应的磷杂七元环化合物[J]. 有机化学, 2022, 42(8): 2481-2487. |
[8] | 崔银, 张国富, 丁成荣. 洛森重排反应研究进展[J]. 有机化学, 2022, 42(7): 2015-2027. |
[9] | 杨治芳, 程乙夫, 张蓓蓓, 董韵怡, 韩驰, 杜云飞. 高价碘试剂介导下的氧化重排反应[J]. 有机化学, 2022, 42(11): 3456-3505. |
[10] | 余璐璐, 丁群山, 宋传君, 常俊标. (–)-Angustureine的对映选择性合成[J]. 有机化学, 2021, 41(6): 2507-2510. |
[11] | 周欣悦, 梁宗显, 王晓娜. 近年来炔酰胺参与的成环反应研究进展[J]. 有机化学, 2021, 41(4): 1288-1318. |
[12] | 兰新婵, 王丽丽, 段征, François Mathey. 磷杂Fries重排反应用于合成2-芘基膦化合物[J]. 有机化学, 2021, 41(3): 1153-1160. |
[13] | 袁文豪, 许家喜. 氧杂环丁烷的扩环反应[J]. 有机化学, 2021, 41(3): 947-958. |
[14] | 周婷婷, 刘霞, 叶子航, 周奕鹏, 杨雅淇, 徐清. 三聚氯氰催化及溶剂效应实现温和高效的酮肟贝克曼重排反应[J]. 有机化学, 2021, 41(2): 688-694. |
[15] | 叶浩, 任婷婷, 吴新星. 叔丁醇钾促进的硒氰酸酯与腙反应合成硒缩醛[J]. 有机化学, 2021, 41(11): 4338-4346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||