有机化学 ›› 2021, Vol. 41 ›› Issue (8): 3192-3203.DOI: 10.6023/cjoc202104003 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
王东琳a, 阚玲珑a, 马玉道a,*(), 刘磊a,b,*()
收稿日期:
2021-04-01
修回日期:
2021-04-29
发布日期:
2021-05-14
通讯作者:
马玉道, 刘磊
基金资助:
Donglin Wanga, Linglong Kana, Yudao Maa(), Lei Liua,b()
Received:
2021-04-01
Revised:
2021-04-29
Published:
2021-05-14
Contact:
Yudao Ma, Lei Liu
Supported by:
文章分享
报道了一种高效的δ-腈基-δ-芳基-双取代的对亚甲基苯醌和二芳基氧磷的1,6-共轭加成反应, 合成了含有氰基取代的季碳中心的二芳基甲烷膦氧化合物. 在温和的反应条件下此磷氢化反应能够顺利进行, 以74%~92%的收率得到目标产物. 另外, 该反应具有优秀的官能团兼容性, 展示出了很好的底物范围. 所合成的含有氰基取代季碳中心的二芳基(多取代甲基)膦氧化合物在发展新的配体方面具有潜在的应用价值.
王东琳, 阚玲珑, 马玉道, 刘磊. 叔丁醇钠催化的δ-腈基-δ-芳基-双取代的对亚甲基苯醌和二芳基氧磷的磷氢化反应研究[J]. 有机化学, 2021, 41(8): 3192-3203.
Donglin Wang, Linglong Kan, Yudao Ma, Lei Liu. NaOtBu-Catalyzed Hydrophosphonylation of δ-CN-δ-aryl-disubstituted para-Quinone Methides with Phosphine Oxides[J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3192-3203.
Entrya | Base | Base/equiv. | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | NaOtBu | 1 | ClCH2CH2Cl | 0.1 | 86 |
2 | Cs2CO3 | 1 | ClCH2CH2Cl | 2 | N.R. |
3 | NaOH | 1 | ClCH2CH2Cl | 2 | 53 |
4 | K2CO3 | 1 | ClCH2CH2Cl | 0.5 | 27 |
5 | Et3N | 1 | ClCH2CH2Cl | 0.5 | 82 |
6 | DBU | 1 | ClCH2CH2Cl | 0.5 | 81 |
7 | NaOtBu | 1 | CH2Cl2 | 0.1 | 77 |
8 | NaOtBu | 1 | CH3CN | 0.5 | 90 |
9 | NaOtBu | 1 | THF | 0.2 | 82 |
10 | NaOtBu | 1 | CHCl3 | 24 | 35 |
11 | NaOtBu | 1 | H2O | 4 | 80 |
12 | LiOtBu | 1 | CH3CN | 0.5 | 23 |
13 | KOtBu | 1 | CH3CN | 0.1 | 75 |
14 | — | — | CH3CN | 24 | 12 |
15 | NaOtBu | 0.1 | CH3CN | 3 | 83 |
16 | NaOtBu | 0.2 | CH3CN | 1 | 87 |
Entrya | Base | Base/equiv. | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | NaOtBu | 1 | ClCH2CH2Cl | 0.1 | 86 |
2 | Cs2CO3 | 1 | ClCH2CH2Cl | 2 | N.R. |
3 | NaOH | 1 | ClCH2CH2Cl | 2 | 53 |
4 | K2CO3 | 1 | ClCH2CH2Cl | 0.5 | 27 |
5 | Et3N | 1 | ClCH2CH2Cl | 0.5 | 82 |
6 | DBU | 1 | ClCH2CH2Cl | 0.5 | 81 |
7 | NaOtBu | 1 | CH2Cl2 | 0.1 | 77 |
8 | NaOtBu | 1 | CH3CN | 0.5 | 90 |
9 | NaOtBu | 1 | THF | 0.2 | 82 |
10 | NaOtBu | 1 | CHCl3 | 24 | 35 |
11 | NaOtBu | 1 | H2O | 4 | 80 |
12 | LiOtBu | 1 | CH3CN | 0.5 | 23 |
13 | KOtBu | 1 | CH3CN | 0.1 | 75 |
14 | — | — | CH3CN | 24 | 12 |
15 | NaOtBu | 0.1 | CH3CN | 3 | 83 |
16 | NaOtBu | 0.2 | CH3CN | 1 | 87 |
[1] |
(a) Bayne, J. M.; Stephan, D. W. Chem. Soc. Rev. 2016, 45, 765.
doi: 10.1039/c5cs00516g pmid: 19384446 |
(b) Chen, X.; Kopecky, D. J.; Mihalic, J.; Jeffries, S.; Min, X.; Heath, J.; Deignan, J.; Lai, S.; Fu, Z.; Guimaraes, C.; Shen, S.; Li, S.; Johnstone, S.; Thibault, S.; Xu, H.; Cardozo, M.; Shen, W.; Walker, N.; Kayser, F.; Wang, Z. J. Med. Chem. 2012, 55, 3837.
doi: 10.1021/jm300037x pmid: 19384446 |
|
(c) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
doi: 10.1021/cr2002646 pmid: 19384446 |
|
(d) Duffy, M. P.; Delaunay, W.; Bouit, P. A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296.
doi: 10.1039/c6cs00257a pmid: 19384446 |
|
(e) Dutartre, M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771.
pmid: 19384446 |
|
(f) George, A.; Veis, A. Chem. Rev. 2008, 108, 4670.
doi: 10.1021/cr0782729 pmid: 19384446 |
|
(g) Montchamp, J.-L. Acc. Chem. Res. 2014, 47, 77.
doi: 10.1021/ar400071v pmid: 19384446 |
|
(h) Nordheider, A.; Woollins, J. D.; Chivers, T. Chem. Rev. 2015, 115, 10378.
doi: 10.1021/acs.chemrev.5b00279 pmid: 19384446 |
|
(i) Queffelec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B., Chem. Rev. 2012, 112, 3777.
doi: 10.1021/cr2004212 pmid: 19384446 |
|
(j) Zhao, D.; Wang, R. Chem. Soc. Rev. 2012, 41, 2095.
doi: 10.1039/C1CS15247E pmid: 19384446 |
|
(k) Zhou, L.; Zhang, H.-W.; Tao, S.; Bassit, L.; Whitaker, T.; McBrayer, T. R.; Ehteshami, M.; Amiralaei, S.; Pradere, U.; Cho, J. H.; Amblard, F.; Bobeck, D.; Detorio, M.; Coats, S. J.; Schinazi, R. F. J. Med. Chem. 2015, 58, 3445.
doi: 10.1021/jm501874e pmid: 19384446 |
|
(l) Li, N. S.; Frederiksen, J. K.; Piccirilli, J. A. Acc. Chem. Res. 2011, 44, 1257.
doi: 10.1021/ar200131t pmid: 19384446 |
|
(m) Ohata, K.; Terashima, S. Tetrahedron 2009, 65, 2244.
doi: 10.1016/j.tet.2009.01.054 pmid: 19384446 |
|
(n) Wakefield, Z. T.; Allen, S. E.; Mccullough, J. F.; Sheridan, R. C.; Kohler, J. J. J. Agric. Food Chem. 1971, 19, 99.
doi: 10.1021/jf60173a014 pmid: 19384446 |
|
(o) Baumgartner, T.; Reau, R. Chem. Rev. 2006, 106, 4681.
doi: 10.1021/cr040179m pmid: 19384446 |
|
(p) Bock, T.; Moehwald, H.; Mulhaupt, R. Macromol. Chem. Phys. 2007, 208, 1324.
doi: 10.1002/(ISSN)1521-3935 pmid: 19384446 |
|
(q) Caminade, A. M.; Majoral, J. P., J. Mater. Chem. 2005, 15, 3643.
pmid: 19384446 |
|
(r) Joly, D.; Tondelier, D.; Deborde, V.; Delaunay, W.; Thomas, A.; Bhanuprakash, K.; Geffroy, B.; Hissler, M.; Reau, R. Adv. Funct. Mater. 2012, 22, 567.
doi: 10.1002/adfm.201102005 pmid: 19384446 |
|
(s) Kim, D.; Salman, S.; Coropceanu, V.; Salomon, E.; Padmaperuma, A. B.; Sapochak, L. S.; Kahn, A.; Bredas, J. L. Chem. Mater. 2010, 22, 247.
doi: 10.1021/cm9029616 pmid: 19384446 |
|
(t) Shimizu, G. K. H.; Vaidhyanathan, R.; Taylor, J. M. Chem. Soc. Rev. 2009, 38, 1430.
doi: 10.1039/b802423p pmid: 19384446 |
|
(u) Walawalkar, M. G.; Roesky, H. W.; Murugavel, R. Acc. Chem. Res. 1999, 32, 117.
doi: 10.1021/ar980040w pmid: 19384446 |
|
[2] |
(a) Grushin, V. V. Chem. Rev. 2004, 104, 1629.
doi: 10.1021/cr030026j |
(b) Luehr, S.; Holz, J.; Boerner, A. ChemCatChem 2011, 3, 1708.
doi: 10.1002/cctc.v3.11 |
|
(c) Tang, W. J.; Zhang, X. M. Chem. Rev. 2003, 103, 3029.
doi: 10.1021/cr020049i |
|
(d) Xia, H.; Yan, H.; Shen, C.; Shen, F.; Zhang, P. Catal. Commun. 2011, 16, 155.
doi: 10.1016/j.catcom.2011.09.021 |
|
(e) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2014, 72, 815. (in Chinese)
doi: 10.6023/A14060436 |
|
(于月娜, 徐明华, 化学学报, 2014, 72, 815.)
doi: 10.6023/A14060436 |
|
(f) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2017, 75, 655. (in Chinese)
doi: 10.6023/A17040181 |
|
(于月娜, 徐明华, 化学学报, 2017, 75, 655.)
doi: 10.6023/A17040181 |
|
[3] |
(a) Hamels, D.; Dansette, P. M.; Hillard, E. A.; Top, S.; Vessieres, A.; Herson, P.; Jaouen, G.; Mansuy, D. Angew. Chem., Int. Ed. 2009, 48, 9124.
pmid: 19307005 |
(b) Messiano, G. B.; da Silva, T.; Nascimento, I. R.; Lopes, L. M. X. Phytochemistry 2009, 70, 590.
doi: 10.1016/j.phytochem.2009.02.008 pmid: 19307005 |
|
(c) Wang, L.; Xie, Y.-B.; Huang, N.-Y.; Yan, J.-Y.; Hu, W.-M.; Liu, M.-G.; Ding, M.-W. ACS Catal. 2016, 6, 4010.
doi: 10.1021/acscatal.6b00165 pmid: 19307005 |
|
(d) Zhou, Q.; Qu, Y.; Mangrum, J. B.; Wang, X. Chem. Res. Toxicol. 2011, 24, 402.
doi: 10.1021/tx100351c pmid: 19307005 |
|
(e) Leary, G. J. Wood Sci. Technol. 1980, 14, 21.
doi: 10.1007/BF00353460 pmid: 19307005 |
|
[4] |
(a) Lam, K. H.; Gambari, R.; Yuen, C. W. M.; Kan, C. W.; Chan, P.; Xu, L.; Tang, W.; Chui, C. H.; Cheng, G. Y. M.; Wong, R. S. M.; Lau, F. Y.; Tong, C. S. W.; Chan, A. K. W.; Lai, P. B. S.; Kok, S. H. L.; Cheng, C. H.; Chan, A. S. C.; Tang, J. C. O. Bioorg. Med. Chem. Lett. 2009, 19, 2266.
doi: 10.1016/j.bmcl.2009.02.091 pmid: 22414898 |
(b) Mondal, S.; Panda, G. RSC Adv. 2014, 4, 28317.
doi: 10.1039/C4RA01341G pmid: 22414898 |
|
(c) Ren, Y.; Baumgartner, T. Dalton Trans. 2012, 41, 7792.
doi: 10.1039/c2dt00024e pmid: 22414898 |
|
(d) Cao, Y.; Nagle, J. K.; Wolf, M. O.; Patrick, B. O. J. Am. Chem. Soc. 2015, 137, 4888.
doi: 10.1021/jacs.5b02078 pmid: 22414898 |
|
(e) Thomas, B.; Régis, R. Chem. Rev. 2006, 106, 4681.
doi: 10.1021/cr040179m pmid: 22414898 |
|
(f) Wu, Z.-G.; Liang, X.; Zhou, J.; Yu, L.; Wang, Y.; Zheng, Y.-X.; Li, Y.-F.; Zuo, J.-L.; Pan, Y. Chem. Commun. 2017, 53, 6637.
doi: 10.1039/C7CC02433A pmid: 22414898 |
|
(g) Remond, E.; Bayardon, J.; Takizawa, S.; Rousselin, Y.; Sasai, H.; Juge, S. Org. Lett. 2013, 15, 1870.
doi: 10.1021/ol400515e pmid: 22414898 |
|
(h) Sues, P. E.; Lough, A. J.; Morris, R. H. Inorg. Chem. 2012, 51, 9322.
doi: 10.1021/ic3010147 pmid: 22414898 |
|
[5] |
(a) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
doi: 10.1021/cr00044a004 pmid: 21348474 |
(b) Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270.
doi: 10.1021/ol1029436 pmid: 21348474 |
|
[6] |
Pallikonda, G.; Chakravarty, M. Eur. J. Org. Chem. 2013, 2013, 944.
doi: 10.1002/ejoc.201201352 |
[7] |
(a) Fujii, K.; Ito, S.; Mikami, K. J. Org. Chem. 2019, 84, 12281.
doi: 10.1021/acs.joc.9b01402 pmid: 24520897 |
(b) Matsude, A.; Hirano, K.; Miura, M. Org. Lett. 2018, 20, 3553.
doi: 10.1021/acs.orglett.8b01323 pmid: 24520897 |
|
(c) Montel, S.; Raffier, L.; He, Y.; Walsh, P. J. Org. Lett. 2014, 16, 1446.
doi: 10.1021/ol5002413 pmid: 24520897 |
|
[8] |
(a) Errede, L. A.; Szwarc, M. Q. Rev. Chem. Soc. 1958, 12, 301.
doi: 10.1039/qr9581200301 |
(b) Li, W.; Xu, X.; Zhang, P.; Li, P. Chem.-Asian J. 2018, 13, 2350.
doi: 10.1002/asia.201800415 |
|
(c) Parra, A.; Tortosa, M. ChemCatChem 2015, 7, 1524.
doi: 10.1002/cctc.v7.10 |
|
(d) Richter, D.; Hampel, N.; Singer, T.; Ofial, A. R.; Mayr, H. Eur. J. Org. Chem. 2009, 2009, 3203.
doi: 10.1002/ejoc.v2009:19 |
|
(e) Itoh, T. Prog. Polym. Sci. 2001, 26, 1019.
doi: 10.1016/S0079-6700(01)00012-0 |
|
[9] |
(a) Jansen, R.; Gerth, K.; Steinmetz, H.; Reinecke, S.; Kessler, W.; Kirschning, A.; Mueller, R. Chem.-Eur. J. 2011, 17, 7739.
doi: 10.1002/chem.201100457 pmid: 11784200 |
(b) Martin, H. J.; Magauer, T.; Mulzer, J. Angew. Chem., Int. Ed. 2010, 49, 5614.
pmid: 11784200 |
|
(c) Peter, M. G. Angew. Chem., Int. Ed. 1989, 28, 555.
pmid: 11784200 |
|
(d) Turner, A. B. Q. Rev. Chem. Soc. 1964, 18, 347.
doi: 10.1039/qr9641800347 pmid: 11784200 |
|
(e) Takao, K.; Sasaki, T.; Kozaki, T.; Yanagisawa, Y.; Tadano, K.; Kawashima, A.; Shinonaga, H. Org. Lett. 2001, 3, 4291.
pmid: 11784200 |
|
[10] |
(a) Mei, G.-J.; Xu, S.-L.; Zheng, W.-Q.; Bian, C.-Y.; Shi, F. J. Org. Chem. 2018, 83, 1414.
doi: 10.1021/acs.joc.7b02942 |
(b) Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370.
doi: 10.1021/acs.orglett.6b01512 |
|
(c) Wu, Z.; Wang, J. Acta Chim. Sinica 2017, 75, 74. (in Chinese)
doi: 10.6023/A16090492 |
|
(吴自俊, 汪舰, 化学学报, 2017, 75, 74.)
doi: 10.6023/A16090492 |
|
[11] |
(a) Wang, J.-Y.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2020, 7, 1743.
doi: 10.1039/D0QO00387E |
(b) Lima, C. G. S.; Pauli, F. P.; Costa, D. C. S.; de Souza, A. S.; Forezi, L. S. M.; Ferreira, V. F.; da Silva, F. d. S. Eur. J. Org. Chem. 2020, 2650.
|
|
(c) Wang, Z.; Zhu, Y.; Pan, X.; Wang, G.; Liu, L. Angew. Chem., Int. Ed. 2020, 59, 3053.
|
|
(d) Yuan, H.; Kowah, J. A. H.; Jiang, J. Tetrahedron Lett. 2020, 61.
|
|
(e) Nigst, T. A.; Ammer, J.; Mayr, H. Angew. Chem.,Int. Ed. 2012, 51, 1353.
doi: 10.1002/anie.201107315 |
|
(f) Shen, Y.; Qi, J.; Mao, Z.; Cui, S. Org. Lett. 2016, 18, 2722.
doi: 10.1021/acs.orglett.6b01173 |
|
(g) Lopez, A.; Parra, A.; Jarava-Barrera, C.; Tortosa, M. Chem. Commun. 2015, 51, 17684.
doi: 10.1039/C5CC06653K |
|
(h) Dong, N.; Zhang, Z.-P.; Xue, X.-S.; Li, X.; Cheng, J.-P. Angew. Chem., Int. Ed. 2016, 55, 1460.
doi: 10.1002/anie.201509110 |
|
(i) Mao, Y.; Wang, Z.; Wang, G.; Zhao, R.; Kan, L.; Pan, X.; Liu, L. ACS Catal. 2020, 10, 7785.
doi: 10.1021/acscatal.0c02486 |
|
(j) Pan, X.; Wang, Z.; Kan, L.; Mao, Y.; Zhu, Y.; Liu, L. Chem. Sci. 2020, 11, 2414.
doi: 10.1039/C9SC05894J |
|
(k) Lin, J.; Sun, W. Chin. J. Org. Chem. 2020, 40, 4367 (in Chinese)
doi: 10.6023/cjoc202000084 |
|
(林进, 孙伟, 有机化学, 2020, 40, 4367.)
doi: 10.6023/cjoc202000084 |
|
(l) Zuo, H.-D.; Hao, W.-J.; Zhu, C.-F.; Guo, C.; Tu, S.-J.; Jiang, B. Org. Lett. 2020, 22, 4471.
doi: 10.1021/acs.orglett.0c01470 |
|
(m) Zuo, H.-D.; Ji, X.-S.; Guo, C.; Tu, S.-J.; Hao, W.-J.; Jiang, B. Org. Chem. Front. 2021, 8, 1496.
doi: 10.1039/D0QO01640C |
|
[12] |
(a) Yang, B.; Yao, W.; Xia, X.-F.; Wang, D. Org. Biomol. Chem. 2018, 16, 4547.
doi: 10.1039/C8OB01057A |
(b) Xiong, B.; Wang, G.; Zhou, C.; Liu, Y.; Xu, W.; Xu, W.-Y.; Yang, C.-A.; Tang, K.-W. Eur. J. Org. Chem. 2019, 3273.
|
|
(c) Zhang, B.; Liu, L.; Mao, S.; Zhou, M.-D.; Wang, H.; Li, L. Eur. J. Org. Chem. 2019, 3898.
|
|
(d) Aher, Y. N.; Pawar, A. B. Org. Biomol. Chem. 2019, 17, 7536.
doi: 10.1039/C9OB01326A |
|
(e) Yuan, H.; Kowah, J. A. H.; Jiang, J. Tetrahedron Lett. 2020, 61, 151748.
doi: 10.1016/j.tetlet.2020.151748 |
|
(f) Arde, P.; Anand, R. V. Org. Biomol. Chem. 2016, 14, 5550.
doi: 10.1039/C6OB00289G |
|
(g) Wang, L.; Yang, F.; Xu, X.; Jiang, J. Org. Chem. Front. 2021, 8, 2002.
doi: 10.1039/D0QO01638A |
|
[13] |
(a) Qi, Y.; Zhang, F.; Wang, L.; Feng, A.; Zhu, R.; Sun, S.; Li, W.; Liu, L. Org. Biomol. Chem. 2020, 18, 3522.
doi: 10.1039/D0OB00551G |
(b) Wang, L.; Wang, N.; Qi, Y.; Sun, S.; Liu, X.; Li, W.; Liu, L. Chin. J. Org. Chem. 2020, 40, 3934. (in Chinese)
doi: 10.6023/cjoc202004027 |
|
(王琳, 王楠, 齐越, 孙书涛, 刘希功, 李伟, 刘磊, 有机化学, 2020, 40, 3934.)
doi: 10.6023/cjoc202004027 |
|
[14] |
Itoh, T.; Nakanishi, E.; Okayama, M.; Kubo, M. Macromolecules 2000, 33, 269.
doi: 10.1021/ma9910540 |
[1] | 李心灵, 孟卫东, 徐修华, 黄焰根. 可见光诱导活化烯烃的芳基氟烷基化反应[J]. 有机化学, 2022, 42(6): 1820-1830. |
[2] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
[3] | 任新意, 王广柱, 纪晓雷, 董开武. 一锅法合成两种含有季碳中心的氰基化合物[J]. 有机化学, 2022, 42(2): 526-533. |
[4] | 李芳洁, 卢斌, 刘阳, 王晓明. 双铑(II)/Xantphos催化的C—H官能团化/烯丙基烷基化串联: 从N-芳基-α-重氮-β-酮酯简便制备3-酰基-3-烯丙基氧化吲哚衍生物[J]. 有机化学, 2022, 42(10): 3390-3397. |
[5] | 李华, 庞靖祥, 刘华铮, 赵长印, 李松, 王恒山, 刘希功. Sc(OTf)3催化的δ-三氟甲基-δ-芳基-双取代对亚甲基苯醌和硫醇的反应: 高效合成二芳基甲烷硫醚化合物[J]. 有机化学, 2021, 41(8): 3134-3143. |
[6] | 王守锋, 王文贵. 三氟甲基季碳中心的合成进展[J]. 有机化学, 2020, 40(7): 1901-1911. |
[7] | 周小强, 闫浩, 王秋亚. N-碘代丁二酰亚胺(NIS)/K2S2O8促进烯酰胺的自偶联反应构建含氮原子的季碳中心[J]. 有机化学, 2020, 40(7): 2142-2147. |
[8] | 王琳, 王楠, 齐越, 孙书涛, 刘希功, 李伟, 刘磊. 基于δ-腈基取代对亚甲基苯醌1,6-氮杂共轭加成的大位阻α-氰胺合成研究[J]. 有机化学, 2020, 40(11): 3934-3943. |
[9] | 陈伟, 郭人予, 龚建贤, 杨震. 基于分子内交叉氧化偶联反应来非对映选择性构建全碳季碳中心[J]. 有机化学, 2019, 39(1): 238-248. |
[10] | 施波超, 方烨汶, 张莉, 金小平, 武永辉, 方媚, 杨宇飞, 陈冲. α-芳基烯基膦酸酯的合成研究进展[J]. 有机化学, 2016, 36(4): 673-686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||