有机化学 ›› 2021, Vol. 41 ›› Issue (10): 3914-3934.DOI: 10.6023/cjoc202105052 上一篇 下一篇
所属专题: 南开大学化学学科创立100周年; 热点论文虚拟合集
综述与进展
收稿日期:
2021-05-31
修回日期:
2021-06-19
发布日期:
2021-07-05
通讯作者:
何良年
基金资助:
Wenbin Huang, Liqi Qiu, Fangyu Ren, Liangnian He()
Received:
2021-05-31
Revised:
2021-06-19
Published:
2021-07-05
Contact:
Liangnian He
Supported by:
文章分享
二氧化碳(CO2)是主要的温室气体, 由于人类过度使用化石资源导致大气中CO2浓度增加, 进而引发全球环境问题. 另一方面, CO2是一种理想的C1资源, 具有安全、储量丰富和廉价易得等优点. 因此如何将CO2应用于有机合成以获得化工产品与燃料, 已成为当前研究热点. 其中, 过渡金属催化的CO2氢化反应是CO2资源化利用的重要途径, 反应可以在温和条件下选择性地生成2e、4e和6e还原产物, 如甲酸、甲酰胺、甲酸酯、甲醛、甲醇以及C2+醇等产物, 具有广阔的应用前景, 因此引人注目. 系统总结了近来过渡金属配合物催化CO2加氢反应的研究进展, 主要对催化剂的种类和结构、活性及其产物选择性等进行总结, 并对近来所发展的与CCU (CO2 capture and utilization)策略相关的CO2原位催化氢化反应进行了分析与讨论. 此外, 对本领域中存在的挑战及展望进行了分析.
黄文斌, 邱丽琪, 任方煜, 何良年. 过渡金属催化CO2氢化反应研究进展[J]. 有机化学, 2021, 41(10): 3914-3934.
Wenbin Huang, Liqi Qiu, Fangyu Ren, Liangnian He. Advances on Transition-Metal Catalyzed CO2 Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3914-3934.
Reaction equation | ΔGo/(kJ•mol–1) | ΔHo/(kJ•mol–1) | Eq. |
---|---|---|---|
CO2 (g)+H2 (g) → HCOOH (l) | +32.9 | –31.2 | (1) |
CO2 (g)+H2 (g)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –9.5 | –84.3 | (2) |
CO2 (aq)+H2 (aq)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –35.4 | –59.8 | (3) |
MHCO3 (aq)+H2 (aq) → HCO2M (aq)+H2O (l) | –0.7 | –20.5 | (4) |
Reaction equation | ΔGo/(kJ•mol–1) | ΔHo/(kJ•mol–1) | Eq. |
---|---|---|---|
CO2 (g)+H2 (g) → HCOOH (l) | +32.9 | –31.2 | (1) |
CO2 (g)+H2 (g)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –9.5 | –84.3 | (2) |
CO2 (aq)+H2 (aq)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –35.4 | –59.8 | (3) |
MHCO3 (aq)+H2 (aq) → HCO2M (aq)+H2O (l) | –0.7 | –20.5 | (4) |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/h–1 | Ref. | |
---|---|---|---|---|---|---|---|---|---|
[RuH2(PPh3)4] | C6H6/H2O | NEt3 | 2.5/2.5 | r.t. | 20 | 87 | 4 | [ | |
[RuH2(PMe3)4] | scCO2 | NEt3/H2O | 12/8.5 | 50 | 1 | 3700 | 1400 (initial) | [ | |
[RuH2(PMe3)4] | scCO2 | NHMe2 | 13/8 | 100 | 14 | 370000 | 26428 | [ | |
[RuCl2(dppe)2] | scCO2 | NHMe2 | 13/8.5 | 100 | 2.05 | 740000 | 360000 | [ | |
[RuCl(OAc)(PMe3)4] | scCO2 | NEt3/C6F5OH | 12/7 | 50 | 0.3 | 31200 | 95000 | [ | |
[(C6Me6)Ru(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 24 | 15400 | 640 | [ | |
[RuCl2(C6H6)]2/DPPM | H2O/THF | NaHCO3 | 0/5 | 70 | 2 | 1400 | 690 | [ | |
[(η6-p-Cymene)Ru(bis-NHC)Cl]PF6 | H2O | KOH | 2/2 | 200 | 75 | 23000 | 300 | [ | |
[(PNP)RuH(Cl)(CO)] | MeOH/H2O | KOH/KHCO3 | — | 150 | 36 | 18420 | 510 | [ | |
[(PNP)RuH(H-BH3)(CO)] | H2O/THF | Na2CO3 | 1.2/3.8 | 79 | 1 | 2200 | 2100 | [ | |
[(PNN)RuH(CO) | Diglyme | K2CO3 | 1.0/3.0 | 200 | 48 | 23000 | 480 | [ | |
[RuCl(H)CO(PNP)] | THF | Morpholine | 3.5/3.5 | 120 | 96 | 1940000 | 20208 | [ | |
[Ru(Acriphos)(PPh3)(Cl)(PhCO2)] | DMSO/H2O | Acetate buffer | 4/8 | 60 | 16 | 16310 | 1019 | [ | |
Ru/PNNN | iPrOH | tBuOK | 4/4 | 90 | 30 | 300000 | 10000 | [ | |
[RhCl(TPPTS)3] | H2O | NHMe2 | 2/2 | r.t. | 12 | 3400 | 280 | [ | |
[RhCl(PPh3)3]/PPh3 | MeOH/DMSO | NEt3 | 4/2 | r.t. | 20 | 2500 | 125 | [ | |
RhCl3•3H2O/CyPPh2 | MeOH | PEI600 | 4/4 | 60 | 32 | 852 | 27 | [ | |
[Cp*Ir(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 1 | 21000 | 23000 | [ | |
[(Cp*Ir)2(THBPM)(H2O)2](SO4)2 | H2O | KHCO3 | 2.5/2.5 | 80 | 1 | 79000 | 53800 | [ | |
[(PNP)IrH3] | H2O/THF | KOH | 3/3 | 120 | 48 | 3500000 | 73000 | [ | |
[(PNP)IrH2(OOCH)] | H2O | KOH | 2.8/2.8 | 185 | 2 | 37300 | 18600 | [ | |
[Cp*Ir(N,N')Cl]Cl | H2O | — | 2.5/2.5 | 80 | 0.08 | 1100 | 13000 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/h–1 | Ref. | |
---|---|---|---|---|---|---|---|---|---|
[RuH2(PPh3)4] | C6H6/H2O | NEt3 | 2.5/2.5 | r.t. | 20 | 87 | 4 | [ | |
[RuH2(PMe3)4] | scCO2 | NEt3/H2O | 12/8.5 | 50 | 1 | 3700 | 1400 (initial) | [ | |
[RuH2(PMe3)4] | scCO2 | NHMe2 | 13/8 | 100 | 14 | 370000 | 26428 | [ | |
[RuCl2(dppe)2] | scCO2 | NHMe2 | 13/8.5 | 100 | 2.05 | 740000 | 360000 | [ | |
[RuCl(OAc)(PMe3)4] | scCO2 | NEt3/C6F5OH | 12/7 | 50 | 0.3 | 31200 | 95000 | [ | |
[(C6Me6)Ru(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 24 | 15400 | 640 | [ | |
[RuCl2(C6H6)]2/DPPM | H2O/THF | NaHCO3 | 0/5 | 70 | 2 | 1400 | 690 | [ | |
[(η6-p-Cymene)Ru(bis-NHC)Cl]PF6 | H2O | KOH | 2/2 | 200 | 75 | 23000 | 300 | [ | |
[(PNP)RuH(Cl)(CO)] | MeOH/H2O | KOH/KHCO3 | — | 150 | 36 | 18420 | 510 | [ | |
[(PNP)RuH(H-BH3)(CO)] | H2O/THF | Na2CO3 | 1.2/3.8 | 79 | 1 | 2200 | 2100 | [ | |
[(PNN)RuH(CO) | Diglyme | K2CO3 | 1.0/3.0 | 200 | 48 | 23000 | 480 | [ | |
[RuCl(H)CO(PNP)] | THF | Morpholine | 3.5/3.5 | 120 | 96 | 1940000 | 20208 | [ | |
[Ru(Acriphos)(PPh3)(Cl)(PhCO2)] | DMSO/H2O | Acetate buffer | 4/8 | 60 | 16 | 16310 | 1019 | [ | |
Ru/PNNN | iPrOH | tBuOK | 4/4 | 90 | 30 | 300000 | 10000 | [ | |
[RhCl(TPPTS)3] | H2O | NHMe2 | 2/2 | r.t. | 12 | 3400 | 280 | [ | |
[RhCl(PPh3)3]/PPh3 | MeOH/DMSO | NEt3 | 4/2 | r.t. | 20 | 2500 | 125 | [ | |
RhCl3•3H2O/CyPPh2 | MeOH | PEI600 | 4/4 | 60 | 32 | 852 | 27 | [ | |
[Cp*Ir(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 1 | 21000 | 23000 | [ | |
[(Cp*Ir)2(THBPM)(H2O)2](SO4)2 | H2O | KHCO3 | 2.5/2.5 | 80 | 1 | 79000 | 53800 | [ | |
[(PNP)IrH3] | H2O/THF | KOH | 3/3 | 120 | 48 | 3500000 | 73000 | [ | |
[(PNP)IrH2(OOCH)] | H2O | KOH | 2.8/2.8 | 185 | 2 | 37300 | 18600 | [ | |
[Cp*Ir(N,N')Cl]Cl | H2O | — | 2.5/2.5 | 80 | 0.08 | 1100 | 13000 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/(h–1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Fe(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 100 | 20 | 7546 | 377 | [ | |
[(PNP)Fe(H2)(CO)] | H2O/THF | NaOH | 0.33/0.67 | 80 | 5 | 790 | 160 | [ | |
[(PNNNP)Fe(H)Br(CO)] | EtOH | DBU | 4.0/4.0 | 80 | 21 | 10275 | 489 | [ | |
[(PNP)Fe(H)(OOCH)(CO)] | THF | DBU/LiOTf | 3.5/3.5 | 80 | 1 | 46100 | 23200 | [ | |
[Fe(rac-P4)(CH3CN)2](BF4)2 | MeOH | NaHCO3 | 0/6.0 | 80 | 24 | 1200 | 50 | [ | |
[Fe] complex | EtOH/H2O | NaHCO3 | 0/3.0 | 120 | 24 | 447 | 19 | [ | |
Co(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 120 | 20 | 3877 | 190 | [ | |
[Co(DMPE)2H] | THF | Verkade's base | 1.0/1.0 | 21 | n/a | 9400 | 74000 | [ | |
[Cp*Co(4,4'-DHBP)(H2O)](PF6)2 | H2O | NaHCO3 | 2.0/2.0 | 100 | 1 | 39 | 39 | [ | |
[(PNP5)Co(CO)2]Cl | CH3CN | DBU/LiOTf | 3.5/3.5 | 45 | 1 | 29000 | 5700 | [ | |
[(PCP)Ni(H)])RuH(CO)] | MeOH | NaHCO3 | 0/5.5 | 150 | 20 | 3000 | 150 | [ | |
Cu(OAc)2•H2O | 1,4-Dioxane | DBU | 2.0/2.0 | 100 | 116 | 167 | 1.4 | [ | |
[Cu(triphos)(MeCN)]PF6 | CH3CN | DBU | 2.0/2.0 | 140 | 2 | 96 | 48 | [ | |
[(PMeNP4)Mo(C2H4)(OOCH)] | 1,4-Dioxane | DBU/LiOTf | 3.5/3.5 | 100 | 16 | 35 | 2 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/(h–1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Fe(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 100 | 20 | 7546 | 377 | [ | |
[(PNP)Fe(H2)(CO)] | H2O/THF | NaOH | 0.33/0.67 | 80 | 5 | 790 | 160 | [ | |
[(PNNNP)Fe(H)Br(CO)] | EtOH | DBU | 4.0/4.0 | 80 | 21 | 10275 | 489 | [ | |
[(PNP)Fe(H)(OOCH)(CO)] | THF | DBU/LiOTf | 3.5/3.5 | 80 | 1 | 46100 | 23200 | [ | |
[Fe(rac-P4)(CH3CN)2](BF4)2 | MeOH | NaHCO3 | 0/6.0 | 80 | 24 | 1200 | 50 | [ | |
[Fe] complex | EtOH/H2O | NaHCO3 | 0/3.0 | 120 | 24 | 447 | 19 | [ | |
Co(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 120 | 20 | 3877 | 190 | [ | |
[Co(DMPE)2H] | THF | Verkade's base | 1.0/1.0 | 21 | n/a | 9400 | 74000 | [ | |
[Cp*Co(4,4'-DHBP)(H2O)](PF6)2 | H2O | NaHCO3 | 2.0/2.0 | 100 | 1 | 39 | 39 | [ | |
[(PNP5)Co(CO)2]Cl | CH3CN | DBU/LiOTf | 3.5/3.5 | 45 | 1 | 29000 | 5700 | [ | |
[(PCP)Ni(H)])RuH(CO)] | MeOH | NaHCO3 | 0/5.5 | 150 | 20 | 3000 | 150 | [ | |
Cu(OAc)2•H2O | 1,4-Dioxane | DBU | 2.0/2.0 | 100 | 116 | 167 | 1.4 | [ | |
[Cu(triphos)(MeCN)]PF6 | CH3CN | DBU | 2.0/2.0 | 140 | 2 | 96 | 48 | [ | |
[(PMeNP4)Mo(C2H4)(OOCH)] | 1,4-Dioxane | DBU/LiOTf | 3.5/3.5 | 100 | 16 | 35 | 2 | [ |
Catalyst precursor | Substrate | Solvent | Additive | P(CO2/H2)a | T/℃ | Time/h–1 | TON | TOF/h–1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
[Ru3(CO)12] | CO2 | NMP | KI | 2/6 | 240 | 3 | 32 | 10 | [ |
[Ru(Cl)(OAc)(PMe)]/Sc(OTf)/ [(PNN)Ru(H)(CO)] | CO2 | 1,4-Dioxane | — | 1/3 | 75 | 16 | 21 | 1.3 | [ |
[(PNP)Ru(HBH)H(CO)] | CO2 | THF | K3PO4 | 0.25/5 | 95 | 54 | 550 | 10 | [ |
[Ru(triphos)(tmm)]2 | CO2 | THF | EtOH | 2/6 | 140 | 24 | 221 | 37 | [ |
[(PNN)Ru(H)Cl(CO)] | CO2 | DMSO | Cs2CO3/K3PO4 | 0.1/6 | 150 | 96 | n/ab | n/a | [ |
[(PNP)Ru(HBH3)H(CO)] | CO2 | THF | PEHAc, K3PO4 | 0.75/6.75 | 145 | 200 | 1200 | 6 | [ |
[(PNP)Ru(H)Cl(CO)] | Ethylene carbonate | THF | KOtBu | 0/6 | 140 | 72 | 87000 | 1200 | [ |
[(PNN)Ru(H)(CO)] | urea | THF | — | 0/1.36 | 110 | 72 | n/a | n/a | [ |
[(PNN)Ru(H)(CO)] | HCOOMe | THF | — | 0/5 | 110 | 14 | 4700 | 335 | [ |
[FeCl2{κ3-HC(pz)3}] | CO2 | — | PEHA | 1.9/5.6 | 80 | 36 | 2387 | 66 | [ |
[(PNP)Fe(H)(CO)] | CO2 | 1,4-Dioxane | Morpholine | 1.7/7.9 | 100 | 16 | 590 | 37 | [ |
[(PNP)MnBr(CO)2] | CO2 | THF | K3PO4 | 3/3 | 110 | 24~36 | 36 | n/a | [ |
Co(BF4)2•6H2O/PP3 | CO2 | THF/EtOH | HNTf2 | 2/7 | 100 | 24 | 50 | 2 | [ |
Catalyst precursor | Substrate | Solvent | Additive | P(CO2/H2)a | T/℃ | Time/h–1 | TON | TOF/h–1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
[Ru3(CO)12] | CO2 | NMP | KI | 2/6 | 240 | 3 | 32 | 10 | [ |
[Ru(Cl)(OAc)(PMe)]/Sc(OTf)/ [(PNN)Ru(H)(CO)] | CO2 | 1,4-Dioxane | — | 1/3 | 75 | 16 | 21 | 1.3 | [ |
[(PNP)Ru(HBH)H(CO)] | CO2 | THF | K3PO4 | 0.25/5 | 95 | 54 | 550 | 10 | [ |
[Ru(triphos)(tmm)]2 | CO2 | THF | EtOH | 2/6 | 140 | 24 | 221 | 37 | [ |
[(PNN)Ru(H)Cl(CO)] | CO2 | DMSO | Cs2CO3/K3PO4 | 0.1/6 | 150 | 96 | n/ab | n/a | [ |
[(PNP)Ru(HBH3)H(CO)] | CO2 | THF | PEHAc, K3PO4 | 0.75/6.75 | 145 | 200 | 1200 | 6 | [ |
[(PNP)Ru(H)Cl(CO)] | Ethylene carbonate | THF | KOtBu | 0/6 | 140 | 72 | 87000 | 1200 | [ |
[(PNN)Ru(H)(CO)] | urea | THF | — | 0/1.36 | 110 | 72 | n/a | n/a | [ |
[(PNN)Ru(H)(CO)] | HCOOMe | THF | — | 0/5 | 110 | 14 | 4700 | 335 | [ |
[FeCl2{κ3-HC(pz)3}] | CO2 | — | PEHA | 1.9/5.6 | 80 | 36 | 2387 | 66 | [ |
[(PNP)Fe(H)(CO)] | CO2 | 1,4-Dioxane | Morpholine | 1.7/7.9 | 100 | 16 | 590 | 37 | [ |
[(PNP)MnBr(CO)2] | CO2 | THF | K3PO4 | 3/3 | 110 | 24~36 | 36 | n/a | [ |
Co(BF4)2•6H2O/PP3 | CO2 | THF/EtOH | HNTf2 | 2/7 | 100 | 24 | 50 | 2 | [ |
Entry | Amine | Capture solvent | Captured asa | Precat. | P(H2)/MPa | T/℃ (t/h) | Yield/% (TON) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1 | Glycol | b | RhCl3•3H2O+L-1b | 4.0 | 60 (16) | 55 (726) | [ |
2 | 2 | — | b | RhCl3•3H2O+L-2b | 4.0 | 60 (16) | 97 (169) | [ |
3 | 3 | — | c | d | 2.0 | 120 (1) | n/ag (248) | [ |
4 | 4 | Water | b | C-1 | 5.0 | 55 (20) | 95 (7375) | [ |
5 | PEHAe | Water | b+c | C-2 | 8.0 | 50 (10) | 53 (255) | [ |
6 | 5 | Water | b | C-3f | 11.0 | 130 (12) | 93 (700) | [ |
Entry | Amine | Capture solvent | Captured asa | Precat. | P(H2)/MPa | T/℃ (t/h) | Yield/% (TON) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1 | Glycol | b | RhCl3•3H2O+L-1b | 4.0 | 60 (16) | 55 (726) | [ |
2 | 2 | — | b | RhCl3•3H2O+L-2b | 4.0 | 60 (16) | 97 (169) | [ |
3 | 3 | — | c | d | 2.0 | 120 (1) | n/ag (248) | [ |
4 | 4 | Water | b | C-1 | 5.0 | 55 (20) | 95 (7375) | [ |
5 | PEHAe | Water | b+c | C-2 | 8.0 | 50 (10) | 53 (255) | [ |
6 | 5 | Water | b | C-3f | 11.0 | 130 (12) | 93 (700) | [ |
[1] |
https://www.iea.org/reports/global-energy-co2-statusreport-2019
|
[2] |
Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; Taylor, P. C.; Vose, R. S.; Wehner, M. F. In Climate Science Special Report: Fourth National Climate Assessment, Vol. I, U.S. Global Change Research Program, Washington, DC, 2017, pp. 35-72.
|
[3] |
(a) Zhang, L. L.; Han, Z. B.; Zhang, L.; Li, M. X.; Ding, K. L. Chin. J. Org. Chem. 2016, 36, 1824. (in Chinese)
|
(张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
|
|
(b) Dong, K. W.; Razzaq, R.; Hu, Y. Y.; Ding, K. L. Top. Curr. Chem. 2017, 375, 23.
|
|
(c) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978. (in Chinese)
doi: 10.6023/cjoc201702038 |
|
(李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978.)
doi: 10.6023/cjoc201702038 |
|
(d) Zhang, W. Z.; Zhang, N.; Guo, C. X.; Lu, X. B. Chin. J. Org. Chem. 2017, 37, 1309. (in Chinese)
doi: 10.6023/cjoc201701031 |
|
(张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309.)
|
|
(e) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948.
doi: 10.1002/anie.v57.49 |
|
(f) Wang, Q.; Sun, J. Chem. Bull. 2018, 81, 312. (in Chinese)
|
|
(王强, 孙京, 化学通报, 2018, 81, 312.)
|
|
(g) Zhang, Y.; Cen, J.; Xiong, W.; Qi, Z.; Jiang, H. Prog. Chem. 2018, 30, 547. (in Chinese)
doi: 10.7536/PC171251 |
|
(张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰, 化学进展, 2018, 30, 547.)
doi: 10.7536/PC171251 |
|
(h) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
doi: 10.1039/C8CS00281A |
|
(i) Chen, L.; Xie, J. H. Chin. J. Org. Chem. 2020, 40, 247. (in Chinese)
doi: 10.6023/cjoc202000005 |
|
(程磊, 谢建华, 有机化学, 2020, 40, 247.)
doi: 10.6023/cjoc202000005 |
|
(j) Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518.
doi: 10.1021/acs.accounts.1c00135 |
|
(k) Yi, Y. P.; Hang, W.; Xi, C. J. Chin. J. Org. Chem. 2021, 41, 80. (in Chinese)
doi: 10.6023/cjoc202007013 |
|
(易雅平, 杭炜, 席婵娟, 有机化学, 2021, 41, 80.)
doi: 10.6023/cjoc202007013 |
|
(o) Zhang, Z.; Gong, L.; Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783. (in Chinese)
doi: 10.6023/A19060208 |
|
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
doi: 10.6023/A19060208 |
|
(p) Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221. (in Chinese)
doi: 10.6023/cjoc202003039 |
|
(周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.)
doi: 10.6023/cjoc202003039 |
|
(q) Chen, K. H.; Li, H. R.; He, L. N. Chin. J. Org. Chem. 2020, 40, 2195.
doi: 10.6023/cjoc202004030 |
|
(陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
doi: 10.6023/cjoc202004030 |
|
(r) Guo, X.; Wang, Y. Z.; Chen, J.; Li, G. Q.; Xia, J. B. Chin. J. Org. Chem. 2020, 40, 2208. (in Chinese)
doi: 10.6023/cjoc202002032 |
|
(郭霄, 王亚洲, 陈洁, 李公强, 夏纪宝, 有机化学, 2020, 40, 2208.)
doi: 10.6023/cjoc202002032 |
|
[4] |
Leitner, W. Angew. Chem., Int. Ed. 1995, 34, 2207.
doi: 10.1002/(ISSN)1521-3773 |
[5] |
(a) Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333, 1733.
doi: 10.1126/science.1206613 pmid: 21940890 |
(b) Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
doi: 10.1021/acs.chemrev.7b00182 pmid: 21940890 |
|
[6] |
Ding, S. T.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 9226.
doi: 10.1002/anie.201200859 |
[7] |
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804.
doi: 10.1021/acs.chemrev.6b00816 pmid: 28656757 |
[8] |
Sordakis, K, Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
doi: 10.1021/acs.chemrev.7b00182 |
[9] |
Farlow, M. W.; Adkins, H. J. Am. Chem. Soc. 1935, 57, 2222.
doi: 10.1021/ja01314a054 |
[10] |
Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 863.
|
[11] |
Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231.
doi: 10.1038/368231a0 |
[12] |
Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.
doi: 10.1021/ja00098a072 |
[13] |
Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
|
[14] |
Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C. C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124, 7963.
doi: 10.1021/ja0167856 |
[15] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
doi: 10.1021/om030382s |
[16] |
Federsel, C.; Jackstell, R.; Boddien, A.; Laurenczy, G.; Beller, M. ChemSusChem 2010, 3, 1048.
doi: 10.1002/cssc.v3:9 |
[17] |
Sanz, S.; Azua, A.; Peris, E. Dalton Trans. 2010, 39, 6339.
doi: 10.1039/c003220d |
[18] |
Liu, Q.; Wu, L.; Gulak, S.; Rockstroh, N.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 7085.
doi: 10.1002/anie.201400456 |
[19] |
Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Prakash, G. K. S.; Olah, G. A. ChemSusChem 2015, 8, 1442.
doi: 10.1002/cssc.201403458 pmid: 25824142 |
[20] |
Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 3, 2412.
doi: 10.1021/cs400609u |
[21] |
Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
doi: 10.1002/anie.201500939 |
[22] |
Rohmann, K.; Kothe, J.; Haenel, M. W.; Englert, U.; Hölscher, M.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 8966.
doi: 10.1002/anie.201603878 |
[23] |
Weilhard, A.; Qadir, M. I. Sans, V. Dupont, J. ACS Catal. 2018, 8, 1628.
doi: 10.1021/acscatal.7b03931 |
[24] |
Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.
doi: 10.1002/cjoc.201800278 |
[25] |
Westhues, N.; Belleflamme, M.; Klankermayer, J. ChemCatChem 2019, 11, 5269.
doi: 10.1002/cctc.201900627 |
[26] |
Malaza, S. S. P.; Makhubela, B. C. E. Journal of CO2 Utilization 2020, 39, 101149.
|
[27] |
Tsai, J. C.; Nicholas, K.M. J. Am. Chem. Soc. 1992, 114, 5117.
doi: 10.1021/ja00039a024 |
[28] |
Hutschka, F.; Dedieu, A.; Eichberger, M.; Fornika, R.; Leitner, W. J. Am. Chem. Soc. 1997, 119, 4432.
doi: 10.1021/ja961579x |
[29] |
Zhang, J. J.; Qian, Q. L.; Wang, Y.; Bediako, B. B.; Cui, M.; Yang, G. Y.; Han, B. X. Green Chem. 2019, 21, 233.
doi: 10.1039/C8GC03476A |
[30] |
Laureanti, J. A.; Buchko, G. W.; Katipamula, S.; Su, Q.; Linehan, J. C.; Zadvornyy, O. A.; Peters, J. W.; O'Hagan, M. ACS Catal. 2019, 9, 620.
doi: 10.1021/acscatal.8b02615 |
[31] |
Gassner, F.; Leitner, W. J. Chem. Soc., Chem. Commun. 1993, 1465.
|
[32] |
Ezhova, N. N.; Kolesnichenko, N. V.; Bulygin, A. V.; Slivinskii, E. V.; Han, S. Russ. Chem. Bull. 2002, 51, 2165.
doi: 10.1023/A:1022162713837 |
[33] |
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
[34] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
doi: 10.1021/om030382s |
[35] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. Organometallics 2007, 26, 702.
doi: 10.1021/om060899e |
[36] |
Ogo, S.; Kabe, R; Hayashi, H.; Harada, R.; Fukuzumi, S. Dalton Trans. 2006, 4657.
|
[37] |
Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.
doi: 10.1021/ja903574e pmid: 19775157 |
[38] |
Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274.
doi: 10.1021/ja2035514 pmid: 21612297 |
[39] |
Azua, A.; Sanz, S.; Peris, E. Chem.-Eur. J. 2011, 17, 3963.
doi: 10.1002/chem.201002907 |
[40] |
Liu, C.; Xie, J. H.; Tian, G. L.; Li, W.; Zhou, Q. L. Chem. Sci. 2015, 6, 2928.
doi: 10.1039/C5SC00248F |
[41] |
Fidalgo, J.; Ruiz-Castañeda, M.; García-Herbosa, G.; Carbayo, A.; Jalόn, F. A.; Rodríguez, A. M.; Manzano, B. R.; Espino, G. Inorg. Chem. 2018, 57, 14186.
doi: 10.1021/acs.inorgchem.8b02164 pmid: 30395446 |
[42] |
Kanega, R.; Ertem, M. Z.; Onishi, N.; Szalda, D. J.; Fujita, E. Organometallics 2020, 39, 1519.
doi: 10.1021/acs.organomet.9b00809 |
[43] |
Hull, J. F.; Himeda, Y.; Wang, W. H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383.
doi: 10.1038/nchem.1295 |
[44] |
Lu, S. M.; Wang, Z.; Li, J.; Xiao, J.; Li, C. Green Chem. 2016, 18, 4553.
doi: 10.1039/C6GC00856A |
[45] |
Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31, L387.
doi: 10.1016/S0020-1693(00)94933-8 |
[46] |
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
doi: 10.1021/ic034881x |
[47] |
Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
doi: 10.1002/anie.201004263 |
[48] |
Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701.
doi: 10.1021/ja307924a |
[49] |
Montandon-Clerc, M.; Laurenczy, G. J. Catal. 2018, 362, 78.
doi: 10.1016/j.jcat.2018.03.030 |
[50] |
Bertini, F.; Gorgas, N.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2016, 6, 2889.
doi: 10.1021/acscatal.6b00416 |
[51] |
Jayarathne, U.; Hazari, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.
doi: 10.1021/acscatal.7b03834 |
[52] |
(a) Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.
doi: 10.1021/acs.accounts.8b00262 |
(b) Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
doi: 10.1002/chem.v18.1 |
|
[53] |
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
doi: 10.1021/ic034881x |
[54] |
Affan, M. A.; Jessop, P. G. Inorg. Chem. 2017, 56, 7301.
doi: 10.1021/acs.inorgchem.7b01242 |
[55] |
Affan, M. A.; Schatte, G.; Jessop, P. G. Inorg. Chem. 2020, 59, 14275.
doi: 10.1021/acs.inorgchem.0c01401 |
[56] |
Watari, R.; Kayaki, Y.; Hirano, S.; Matsumoto, N.; Ikariya, T. Adv. Synth. Catal. 2015, 357, 1369.
doi: 10.1002/adsc.v357.7 |
[57] |
Zall, C. M.; Linehan, J. C.; Appel, A. M. ACS Catal. 2015, 5, 5301.
doi: 10.1021/acscatal.5b01646 |
[58] |
Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci. China Chem. 2019, 62, 256.
doi: 10.1007/s11426-018-9358-6 |
[59] |
(a) Du, C. Y.; Chen, Y. F. Acta Chim. Sinica 2020, 78, 938. (in Chinese)
doi: 10.6023/A20060268 |
(杜重阳, 陈耀峰, 化学学报, 2020, 78, 938.)
doi: 10.6023/A20060268 |
|
(b) Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.
doi: 10.1002/cjoc.v38.10 |
|
[60] |
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
doi: 10.1002/anie.v50.42 |
[61] |
Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. H. Chem. Sci. 2015, 6, 4291.
doi: 10.1039/C5SC01467K |
[62] |
Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
doi: 10.1021/cs501998t |
[63] |
Zhu, F.; Zhu-Ge, L.; Yang, G.; Zhou, S. ChemSusChem 2015, 8, 609.
doi: 10.1002/cssc.v8.4 |
[64] |
Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
doi: 10.1002/chem.v18.1 |
[65] |
Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. J. Am. Chem. Soc. 2013, 135, 11533.
doi: 10.1021/ja406601v |
[66] |
Badiei, Y. M.; Wang, W.-H.; Hull, J. F.; Szalda, D. J.; Muckerman, J. T.; Himeda, Y.; Fujita, E. Inorg. Chem. 2013, 52, 12576.
doi: 10.1021/ic401707u pmid: 24131038 |
[67] |
Spentzos, A. Z.; Barnes, C. L.; Bernskoetter, W. H. Inorg. Chem. 2016, 55, 8225.
doi: 10.1021/acs.inorgchem.6b01454 pmid: 27454669 |
[68] |
Enthaler, S.; Bruck, A.; Kammer, A.; Junge, H.; Irran, E.; Gulak, S. ChemCatChem 2015, 7, 65.
doi: 10.1002/cctc.v7.1 |
[69] |
Zhang, Y. Y.; Williard, P. G.; Bernskoetter, W. H. Organometallics 2016, 35, 860.
doi: 10.1021/acs.organomet.5b00955 |
[70] |
Reuss, G.; Disteldorf, W.; Gamer, A. O.; Hilt, A. In UllmannÏs Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
|
[71] |
Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
doi: 10.1021/ja500708w |
[72] |
Ren, X. Y.; Zheng, Z. Y.; Zhang, L.; Wang, Z.; Xia, C. G.; Ding, K. L. Angew. Chem. 2017, 129, 316.
doi: 10.1002/ange.v129.1 |
[73] |
Hua, K. M.; Liu, X. F.; Wei, B. Y.; Shao, Z. L.; Deng, Y. C.; Zhong, L. S.; Wang, H.; Sun, Y. H. Green Chem. 2021, DOI: 10.1039/d0gc03913f.
doi: 10.1039/d0gc03913f |
[74] |
(a) Arpe, H. J. Industrial Organic Chemistry, Vol. 5, Wiley-VCH, Weinheim, 2010.
|
(b) Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H. J. Methanol: The Basic Chemical and Energy Feedstock of the Future, Springer, Amsterdam, 2013.
|
|
(c) Baerns, M.; Behr, A.; Brehm, A.; Gmehling, J.; Hofmann, H.; Onken, U.; Renken, A. Technische Chemie, Wiley-VCH, Weinheim, 2006.
|
|
[75] |
(a) Gaikwad, R.; Bansode, A.; Urakawa, A. J. Catal. 2016, 343, 127.
doi: 10.1016/j.jcat.2016.02.005 |
(b) Xie, S.; Zhang, W.; Lan, X.; Lin, H. ChemSusChem 2020, 13, 6141.
|
|
[76] |
Jessop, P. G. In The Handbook of Homogeneous Hydrogenation, Eds.: de Vries, J. G.; Elsevier, C. J., Wiley-VCH, Weinheim, 2007, p. 489.
|
[77] |
(a) Tominaga, K. I.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc. Chem. Commun. 1993, 629.
|
(b) Tominaga, K. i.; Sasaki, Y.; Watanabe, T.; Saito, M. Bull. Chem. Soc. Jpn. 1995, 68, 2837.
doi: 10.1246/bcsj.68.2837 |
|
[78] |
(a) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
doi: 10.1038/nchem.1089 |
(b) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702.
doi: 10.1002/anie.201106612 |
|
(c) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756.
doi: 10.1021/ja1080019 |
|
[79] |
Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.
doi: 10.1021/ja208760j |
[80] |
Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
doi: 10.1021/ja511329m pmid: 25594380 |
[81] |
Wesselbaum, S.; Stein, T. v.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
doi: 10.1002/anie.201202320 |
[82] |
Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.
doi: 10.1021/acscatal.5b00194 |
[83] |
Qian, Q. L.; Cui, M.; He, Z. H.; Wu, C. Y.; Zhu, Q. G.; Zhang, Z. F.; Ma, J.; Yang, G. Y.; Zhang, J. J.; Han, B. X. Chem. Sci. 2015, 6, 5685.
doi: 10.1039/C5SC02000J |
[84] |
Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.; Klankermayer, J. Angew. Chem., Int. Ed. 2016, 55, 12266.
doi: 10.1002/anie.201606427 |
[85] |
Wang, Z.; Zhao, Z. W.; Li, Y.; Zhong, Y. X.; Zhang, Q. Y.; Liu, Q. B.; Solan, G. A.; Ma, Y. P.; Sun, W. H. Chem. Sci. 2020, 11, 6766.
doi: 10.1039/D0SC02942D |
[86] |
Schieweck, B. G.; Jurling-Will, P.; Klankermayer, J. ACS Catal. 2020, 10, 3890.
doi: 10.1021/acscatal.9b04977 |
[87] |
Ribeiro, A. P. C.; L. Martins, M. D. R. S.; Pombeiro, A. J. L. Green Chem. 2017, 19, 4811.
doi: 10.1039/C7GC01993A |
[88] |
Lane, E. M.; Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Organometallics 2019, 38, 3084.
doi: 10.1021/acs.organomet.9b00413 |
[89] |
(a) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.
doi: 10.1021/jacs.7b10149 |
(b) Qiu, J.; Gao, S.; Li, C. P.; Zhang, L.; Wang, Z.; Wang, X. M.; Ding, K. L. Chem.-Eur. J. 2019, 25, 13874.
doi: 10.1002/chem.v25.61 |
|
(c) Chen, X. W.; Zhu, L.; Gui, Y. Y.; Jing, K.; Jiang, Y. X.; Bo, Z. Y.; Lan, Y.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2019, 141, 18825.
doi: 10.1021/jacs.9b09721 |
|
(d) Wang, M. Y.; Jin, X.; Wang, X. F.; Xia, S. M.; Wang, Y.; Huang, S. Y.; Li, Y.; He, L. N.; Ma, X. B. Angew. Chem., Int. Ed. 2021, 60, 3984.
doi: 10.1002/anie.v60.8 |
|
[90] |
(a) Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2009, 48, 2739.
doi: 10.1021/ie8016237 |
(b) Wang, C. M.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angew. Chem., Int. Ed. 2010, 49, 5978.
doi: 10.1002/anie.201002641 |
|
[91] |
(a) Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
(b) Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
doi: 10.1039/c2ee02774g |
|
(c) Kar, S.; Goeppert, A.; Surya Prakash, G. K. Acc. Chem. Res. 2019, 52, 2892.
doi: 10.1021/acs.accounts.9b00324 |
|
[92] |
(a) Yang, Z. Z.; Zhao, Y. N.; He, L. N. RSC Adv. 2011, 1, 545.
doi: 10.1039/c1ra00307k |
(b) Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.
doi: 10.1039/c1ee02156g |
|
[93] |
(a) Su, J.; Lu, M.; Lin, H. Green Chem. 2015, 17, 2769.
doi: 10.1039/C5GC00397K pmid: 26335851 |
(b) Moret, S.; Dyson, P. J.; Laurenczy, G. Nat. Commun. 2014, 5, 4017.
doi: 10.1038/ncomms5017 pmid: 26335851 |
|
(c) Schuchmann, K.; Müller, V. Science 2013, 342, 1382.
doi: 10.1126/science.1244758 pmid: 26335851 |
|
(d) Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.
doi: 10.1021/acs.chemrev.5b00197 pmid: 26335851 |
|
(e) Zhao, T.; Hu, X.; Wu, Y.; Zhang, Z. Angew. Chem., Int. Ed. 2019, 58, 722.
doi: 10.1002/anie.201809634 pmid: 26335851 |
|
(f) Scott, M.; Blas Molinos, B.; Westhues, C.; Franciò, G.; Leitner, W. ChemSusChem 2017, 10, 1085.
doi: 10.1002/cssc.201601814 pmid: 26335851 |
|
[94] |
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
[95] |
Zhang, S.; Li, Y. N.; Zhang, Y. W.; He, L. N.; Yu, B.; Song, Q. W.; Lang, X. D. ChemSusChem 2014, 7, 1484.
doi: 10.1002/cssc.201400133 |
[96] |
Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.
doi: 10.1039/C4RA08740B |
[97] |
McNamara, N. D.; Hicks, J. C. ChemSusChem 2014, 7, 1114.
doi: 10.1002/cssc.201301231 |
[98] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. Green Chem. 2016, 18, 5831.
doi: 10.1039/C6GC01165A |
[99] |
Guan, C.; Pan, Y.; Ang, E. P. L.; Hu, J.; Yao, C.; Huang, M. H.; Li, H.; Lai, Z.; Huang, K. W. Green Chem. 2018, 20, 4201.
doi: 10.1039/C8GC02186D |
[100] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. J. Am. Chem. Soc. 2016, 138, 778.
doi: 10.1021/jacs.5b12354 pmid: 26713663 |
[101] |
(a) Boddien, A.; Gärtner, F.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6411.
doi: 10.1002/anie.201101995 pmid: 25824142 |
(b) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
doi: 10.1002/anie.v50.42 pmid: 25824142 |
|
(c) Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Surya Prakash, G. K.; Olah, G. A. ChemSusChem 2015, 8, 1442.
doi: 10.1002/cssc.201403458 pmid: 25824142 |
|
(d) Dai, Z.; Luo, Q.; Cong, H.; Zhang, J.; Peng, T. New J. Chem. 2017, 41, 3055.
doi: 10.1039/C6NJ03855G pmid: 25824142 |
|
(e) Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
doi: 10.1021/cs501998t pmid: 25824142 |
|
[102] |
Kar, S.; Goeppert, A.; Galvan, V.; Chowdhury, R.; Olah, J.; Surya Prakash, G. K. J. Am. Chem. Soc. 2018, 140, 16873.
doi: 10.1021/jacs.8b09325 |
[103] |
Li, Y. N.; Liu, X. F.; He, L. N. J. CO2 Util. 2019, 29, 74.
|
[104] |
Han, Z. B.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 13041.
doi: 10.1002/anie.201207781 |
[105] |
(a) The omega process (the only advanced mono EG process) is a process in which ethylene oxide is reacted with CO2 to first afford ethylene carbonate, followed by catalytic hydrolysis of the carbonate to selectively produce mono EG, which is an important component of automotive antifreeze and a key precursor to polyester, with global demands of over 25 million metric tons in 2010. The prices of ethylene epoxide, CO2, and EG are 1600, 50, and 1300 US$/metric ton, respectively.
|
(b) Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Mao, F.; Wei, W.; Sun, Y. Catal. Today 2009, 148, 221.
doi: 10.1016/j.cattod.2009.08.015 |
|
[106] |
Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
doi: 10.1038/nchem.1089 |
[107] |
Kar, S.; Goeppert, A.; Kothandaraman, J.; Prakash, G. K. S. ACS Catal. 2017, 7, 6347.
doi: 10.1021/acscatal.7b02066 |
[108] |
Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2017, 56, 1890.
doi: 10.1002/anie.201609077 |
[1] | 廖旭, 王泽宇, 唐武飞, 林金清. 多孔有机聚合物用于化学固定二氧化碳的研究进展[J]. 有机化学, 2023, 43(8): 2699-2710. |
[2] | 刘露, 张曙光, 胡仁威, 赵晓晓, 崔京南, 贡卫涛. 基于多羟基柱[5]芳烃的酚醛多孔聚合物合成及CO2催化转化[J]. 有机化学, 2023, 43(8): 2808-2814. |
[3] | 王莎, 陈常鹏, 曾小明. 联吡啶配体促进铬催化炔烃的顺式硼氢化反应[J]. 有机化学, 2023, 43(7): 2447-2453. |
[4] | 宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建. 利用硅氢加成反应催化转化二氧化碳研究进展[J]. 有机化学, 2023, 43(6): 2068-2080. |
[5] | 刘双, 邹亮华, 王晓明. 均相钴催化氨硼烷的脱氢及转移氢化反应的研究进展[J]. 有机化学, 2023, 43(5): 1713-1725. |
[6] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[7] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[8] | 党燕, 贾朝红, 王亚兰, 王丽, 李亚飞, 李亚红. 含吡咯基配体的锌、锂和镁配合物的合成与表征及其对芳基碘代物的硼化反应和醛、酮的硼氢化反应的催化作用[J]. 有机化学, 2023, 43(3): 1124-1135. |
[9] | 刘桂杰, 付正强, 陈飞, 徐彩霞, 李敏, 刘宁. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635. |
[10] | 苏沛锋, 倪金煜, 柯卓锋. 二氧化碳硅氢化及相关转化的均相催化体系研究进展[J]. 有机化学, 2023, 43(10): 3526-3543. |
[11] | 冯向青, 杜海峰. B(C6F5)3催化不饱和烃的硅化反应[J]. 有机化学, 2023, 43(10): 3544-3557. |
[12] | 黄燕, 张谦, 詹乐武, 侯静, 李斌栋. 可见光诱导甲酸盐参与的烯烃氢羧化反应[J]. 有机化学, 2022, 42(8): 2568-2573. |
[13] | 徐勇, 张永兴, 胡佳, 陈宬, 原晔, Francis Verpoort. ZnO/离子液体体系催化常压二氧化碳合成β-羰基氨基甲酸酯[J]. 有机化学, 2022, 42(8): 2542-2550. |
[14] | 陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480. |
[15] | 管怡雯, 常克俭, 孙千林, 徐信. 基于稀土金属路易斯酸碱对化学的研究进展[J]. 有机化学, 2022, 42(5): 1326-1335. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||