有机化学 ›› 2021, Vol. 41 ›› Issue (10): 3808-3815.DOI: 10.6023/cjoc202105057 上一篇 下一篇
所属专题: 南开大学化学学科创立100周年; 热点论文虚拟合集
综述与进展
收稿日期:
2021-05-31
修回日期:
2021-07-15
发布日期:
2021-09-17
通讯作者:
杨小会
Yaoxin Wang, Chen Cui, Xiaohui Yang()
Received:
2021-05-31
Revised:
2021-07-15
Published:
2021-09-17
Contact:
Xiaohui Yang
文章分享
有机氯化物已经被广泛应用到医药、农药及材料等领域. 此外, 有机氯化物也是重要的合成砌块, 作为起始原料参与到多种反应中, 例如自由基反应、取代反应以及偶联反应等. 烯烃的氢氯化反应是合成有机氯化物最直接高效的方法之一, 在过去三十年已经取得了很多突破性的成果. 系统介绍了近三十年烯烃氢氯化反应的研究进展, 按照是否涉及金属催化, 主要分为无金属参与的氢氯化反应和金属催化的氢氯化反应. 分别着重介绍了其相应的反应类型及相关机理, 并对今后的发展方向进行了展望.
王耀鑫, 崔晨, 杨小会. 烯烃氢氯化反应的研究进展[J]. 有机化学, 2021, 41(10): 3808-3815.
Yaoxin Wang, Chen Cui, Xiaohui Yang. Recent Advances in Hydrochlorination of Alkenes[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3808-3815.
[1] |
(a) Kyne, S. H.; Lefèvre, G.; Ollivier, C.; Petit, M.; Cladera, C. A. R.; Fensterbank, L. Chem. Soc. Rev. 2020, 49, 8501.
doi: 10.1039/D0CS00969E |
(b) Liu, Q.; Zhang, L.; Mo, F. Acta Chim. Sinica 2020, 78, 1297. (in Chinese)
doi: 10.6023/A20070294 |
|
(刘谦益, 张雷, 莫凡洋, 化学学报, 2020, 78, 1297.)
doi: 10.6023/A20070294 |
|
(c) Togo, H. Advanced Free Radical Reactions for Organic Synthesis, Elsevier, Amsterdam, 2004.
|
|
[2] |
Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 5th ed., Springer, New York, 2007.
|
[3] |
For reviews, see: (a) Cheng, L.; Zhou, Q.-L. Acta Chim. Sinica 2020, 78, 1017. (in Chinese)
doi: 10.6023/A20070335 |
(程磊, 周其林, 化学学报, 2020, 78, 1017.)
doi: 10.6023/A20070335 |
|
(b) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Chem. Rev. 2017, 117, 11680.
doi: 10.1021/acs.chemrev.6b00833 |
|
(c) Liu, N.-W.; Liang, S.; Manolikakes, G. Synthesis 2016, 48, 1939.
doi: 10.1055/s-00000084 |
|
(d) Terao, J.; Kambe, N. Acc. Chem. Res. 2008, 41, 1545.
doi: 10.1021/ar800138a |
|
(e) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
doi: 10.1002/anie.200803611 |
|
For select papers, see: (f) Yao, D.; Zhang, J.; Xu, L. Chin. J. Org. Chem. 2020, 40, 1673. (in Chinese)
doi: 10.6023/cjoc201912038 |
|
(姚丹丹, 张金利, 徐亮, 有机化学, 2020, 40, 1673.)
doi: 10.6023/cjoc201912038 |
|
(g) Ma, D.; Niu, S.; Zhao, J.; Jiang, X.; Jiang, Y.; Zhang, X.; Sun, T. Chin. J. Chem. 2017, 35, 1661.
doi: 10.1002/cjoc.v35.11 |
|
(h) Wang, X.; Wang, S. L.; Xue, W. C.; Gong, H. G. J. Am. Chem. Soc. 2015, 137, 11562.
doi: 10.1021/jacs.5b06255 |
|
(i) Gong, T.; Jiang, Y.; Fu, Y. Chin. Chem. Lett. 2014, 25, 397.
doi: 10.1016/j.cclet.2014.01.006 |
|
(j) Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2012, 138, 6139.
doi: 10.1021/jacs.6b03157 |
|
(k) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.
doi: 10.1021/ja304068t |
|
[4] |
(a) Kohlmeyer, C.; Schafer, A.; Huy, P. H.; Hilt, G. ACS Catal. 2020, 10, 11567.
doi: 10.1021/acscatal.0c03348 |
(b) Mohite, A. R.; Phatake, R. S.; Dubey, P.; Agbaria, M.; Shames, A. I.; Lemcoff, N. G.; Reany, O. J. Org. Chem. 2020, 85, 12901.
doi: 10.1021/acs.joc.0c01431 |
|
(c) Zheng, D.; Zhou, A.; Zhu, X.; Zheng, H.; Sun, X. Chin. J. Org. Chem. 2016, 36, 137. (in Chinese)
doi: 10.6023/cjoc201507020 |
|
(郑大贵, 周安西, 祝显虹, 郑洪富, 孙向前, 有机化学, 2016, 36, 137.)
doi: 10.6023/cjoc201507020 |
|
(d) Huy, P. H.; Motsch, S.; Kappler, S. M. Angew. Chem., Int. Ed. 2016, 55, 10145.
doi: 10.1002/anie.201604921 |
|
(e) Vanos, C. M.; Lambert, T. H. Angew. Chem., Int. Ed. 2011, 50, 12222.
doi: 10.1002/anie.v50.51 |
|
[5] |
King, S. M.; Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2014, 136, 6884.
doi: 10.1021/ja502885c |
[6] |
(a) Yu, P.; Bismuto, A.; Morandi, B. Angew. Chem., Int. Ed. 2020, 59, 2904.
doi: 10.1002/anie.v59.7 |
(b) Zeng, X.; Liu, S.; Hammond, G. B.; Xu, B. ACS Catal. 2018, 8, 904.
doi: 10.1021/acscatal.7b03563 |
|
(c) Derosa, J.; Cantu, A. L.; Boulous, M. N.; O'Duill, M. L.; Turnbull, J. L.; Liu, Z.; De La Torre, D. M.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 5183.
doi: 10.1021/jacs.7b00892 |
|
(d) Zeng, X.; Lu, Z.; Liu, S.; Hammond, G. B.; Xu, B. J. Org. Chem. 2017, 82, 13179.
doi: 10.1021/acs.joc.7b02257 |
|
(e) Xu, C.; Ma, C.; Xiao, F.; Chen, H. Chin. Chem. Lett. 2016, 27, 1683.
doi: 10.1016/j.cclet.2016.04.019 |
|
[7] |
For select reviews, see: (a) Guillemard, L.; Kaplaneris, N.; Ackermann, L.; Johansson, M. J. Nat. Rev. Chem. 2021, 5, 522.
doi: 10.1038/s41570-021-00300-6 pmid: 26694767 |
(b) Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
doi: 10.1021/acs.chemrev.6b00089 pmid: 26694767 |
|
(c) Liu, W.; Groves, J. T. Acc. Chem. Res. 2015, 48, 1727.
doi: 10.1021/acs.accounts.5b00062 pmid: 26694767 |
|
For select papers, see: (d) Fawcett, A.; Keller, M. J.; Herrera, Z.; Hartwig, J. F. Angew. Chem., Int. Ed. 2021, 60, 8276.
doi: 10.1002/anie.v60.15 pmid: 26694767 |
|
(e) Herron, A. N.; Liu, D.; Xia, G.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
doi: 10.1021/jacs.9b13171 pmid: 26694767 |
|
(f) Zhu, Y.; Shi, J.; Yu, W. Org. Lett. 2020, 22, 8899.
doi: 10.1021/acs.orglett.0c03297 pmid: 26694767 |
|
(g) Li, G.; Dilger, A. K.; Cheng, P. T.; Ewing, W. R.; Groves, J. T. Angew. Chem., Int. Ed. 2018, 57, 1251.
doi: 10.1002/anie.v57.5 pmid: 26694767 |
|
(h) Quinn, R. K.; Kçnst, Z. A.; Michalak, S. E.; Schmidt, Y.; Szklarski, A. R.; Flores, A. R.; Nam, S.; Horne, D. A.; Vanderwal, C. D.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 696.
doi: 10.1021/jacs.5b12308 pmid: 26694767 |
|
[8] |
Smith, M. B.; March, J. March's Advanced Organic Chemistry, John Wiley and Sons, New York, 2001.
|
[9] |
(a) Fahey, R. C.; McPherson, C. A. J. Am. Chem. Soc. 1971, 93, 2445.
doi: 10.1021/ja00739a015 |
(b) Stille, J. K.; Sonnenberg, F. M.; Kinstle, T. H. J. Am. Chem. Soc. 1966, 88, 4922.
doi: 10.1021/ja00973a028 |
|
(c) Brown, H. C.; Rei, M.-H. J. Org. Chem. 1966, 31, 1090.
doi: 10.1021/jo01342a024 |
|
(d) Dewar, M. J. S.; Fahey, R. C. J. Am. Chem. Soc. 1963, 85, 2245.
doi: 10.1021/ja00898a012 |
|
(e) Ecke, G. G.; Cook, N. C.; Whitmore, F. C. J. Am. Chem. Soc. 1950, 72, 1511.
doi: 10.1021/ja01160a023 |
|
(f) Schmerling, L. J. Am. Chem. Soc. 1946, 68, 195.
doi: 10.1021/ja01206a013 |
|
(g) Whitmore, F. C.; Johnston, F. J. Am. Chem. Soc. 1933, 55, 5020.
doi: 10.1021/ja01339a053 |
|
[10] |
Onitsuka, S.; Jin, Y. Z.; Shaikh, A. C.; Furuno, H.; Inanaga, J. Molecules 2012, 17, 11469.
pmid: 23018922 |
[11] |
Jin, Y. Z.; Yasuda, N.; Furuno, H.; Inanaga, J. Tetrahedron Lett. 2003, 44, 8765.
doi: 10.1016/j.tetlet.2003.09.181 |
[12] |
Ballini, R.; Bosica, G.; Parrini, M. Tetrahedron Lett. 1998, 39, 7963.
doi: 10.1016/S0040-4039(98)01730-4 |
[13] |
(a) Kropp, P. J.; Daus, K. A.; Tubergen, M. W.; Kepler, K. D.; Wil-son, V. P.; Craig, S. L.; Baillargeon, M. M.; Breton, G. W. J. Am. Chem. Soc. 1993, 115, 3071.
doi: 10.1021/ja00061a005 |
(b) Kropp, P. J.; Daus, K. A.; Crawford, S. D.; Tubergen, M. W.; Kepler, K. D.; Craig, S. L.; Wilson, V. P. J. Am. Chem. Soc. 1990, 112, 7433.
doi: 10.1021/ja00176a075 |
|
[14] |
de Mattos, M. C. S.; Sanseverino, A. M. Synth. Commun. 2001, 30, 1975.
doi: 10.1080/00397910008087247 |
[15] |
Tanemura, K. Tetrahedron Lett. 2018, 59, 4293.
doi: 10.1016/j.tetlet.2018.10.043 |
[16] |
Boudjouk, P.; Kim, B. K.; Han, B. H. Synth. Commun. 1996, 26, 3479.
doi: 10.1080/00397919608003752 |
[17] |
Yadav, V. K.; Babu, K. G. Eur. J. Org. Chem. 2005, 2005, 452.
doi: 10.1002/(ISSN)1099-0690 |
[18] |
Liang, S.; Hammond, G. B.; Xu, B. Green. Chem. 2018, 20, 680.
doi: 10.1039/C7GC03665E |
[19] |
Schevenels, F. T.; Shen, M.; Snyder, S. A. J. Am. Chem. Soc. 2017, 139, 6329.
doi: 10.1021/jacs.6b12653 pmid: 28462991 |
[20] |
Wilger, D. J.; Grandjean, J. M. M.; Lamment, T. R.; Nicewicz, D. A. Nat. Chem. 2014, 6, 720.
doi: 10.1038/nchem.2000 pmid: 25054943 |
[21] |
Alper, H.; Huang, Y. Organometallics 1991, 10, 1665.
doi: 10.1021/om00052a010 |
[22] |
Fahey, R. C.; Monahan, M. W.; Mcphersons, C. A. J. Am. Chem. Soc. 1970, 92, 2816.
doi: 10.1021/ja00712a035 |
[23] |
Podhajsky, S. M.; Sigman, M. S. Organometallics. 2007, 26, 5680.
pmid: 19779575 |
[24] |
Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 5758.
doi: 10.1002/anie.v47:31 |
[25] |
Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.
doi: 10.1021/ja062355+ |
[1] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[2] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[3] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[4] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[5] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[6] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[7] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[8] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[9] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[10] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[11] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[12] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[13] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[14] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[15] | 梁志鹏, 叶浩, 张海滨, 姜国民, 吴新星. 环丁酮类腙参与的偕二氟环丙烷开环胺化反应[J]. 有机化学, 2023, 43(4): 1483-1491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||