有机化学 ›› 2021, Vol. 41 ›› Issue (10): 3753-3770.DOI: 10.6023/cjoc202104004 上一篇 下一篇
所属专题: 镍催化有机反应虚拟合辑; 南开大学化学学科创立100周年; 热点论文虚拟合集
综述与进展
收稿日期:
2021-04-01
修回日期:
2021-04-15
发布日期:
2021-04-16
通讯作者:
史炳锋
基金资助:
Received:
2021-04-01
Revised:
2021-04-15
Published:
2021-04-16
Contact:
Bing-Feng Shi
Supported by:
文章分享
含氮化合物广泛存在于天然产物、药物分子和合成中间体中, 因此在有机化合物中引入含氮官能团具有重要的意义. 尽管过渡金属催化的C—N偶联反应为含氮化合物的构建提供了一种应用广泛的策略, 然而需要多步预官能团化的反应底物. 近年来, 过渡金属催化的碳氢键胺化反应为碳-氮键的构建提供了更具原子经济性和步骤经济性的全新策略. 与钯、铑等贵金属相比, 铜、钴、镍等廉价金属由于地球储量丰富, 更为廉价易得, 且往往具有独特的催化活性, 而受到广泛关注. 按照廉价金属、碳氢键和胺化试剂的类型进行分类, 综述了近年来铜、钴、镍催化的导向基辅助的碳氢键胺化反应研究进展, 着重探讨了各种胺化试剂及其应用, 并对目前该领域的局限性和发展趋势进行了分析和展望.
冯亚岚, 史炳锋. 廉价金属(铜、钴、镍)催化的导向碳氢键胺化反应研究进展[J]. 有机化学, 2021, 41(10): 3753-3770.
Ya-Lan Feng, Bing-Feng Shi. Recent Advances in Base Metal (Copper, Cobalt and Nickel)-Catalyzed Directed C—H Amination[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3753-3770.
[1] |
(a) Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences, Wiley-VCH, Weinheim, 2008.
|
(b) Ge, L.; Chiou, M.-F.; Li, Y.; Bao, H. Green Synth. Catal. 2020, 1, 86.
|
|
[2] |
(a) Suzuki, A. Angew. Chem., nt. Ed. 2011, 50, 6722.
|
(b) Zhang, Y.-F.; Shi, Z.-J. Acc. Chem. Res. 2019, 52, 161.
doi: 10.1021/acs.accounts.8b00408 |
|
[3] |
(a) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901.
doi: 10.1021/ja00096a059 |
(b) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.
doi: 10.1021/ja00092a058 |
|
[4] |
(a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382.
doi: 10.1002/(ISSN)1099-0682 |
(b) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691.
doi: 10.1002/(ISSN)1099-0682 |
|
(c) Cai, Q.; Zou, B.-L.; Ma, D.-W. Angew. Chem.,Int. Ed. 2006, 118, 1298.
doi: 10.1002/(ISSN)1521-3757 |
|
(d) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
doi: 10.1021/ar8000298 |
|
(e) Monnier, F.; Taillefer, M. Angew. Chem., nt. Ed. 2009, 48, 6954.
|
|
(f) Bhunia, S.; Pawar, G.-G.; Kumar, S.-V.; Jiang, Y.-W.; Ma, D.-W. Angew. Chem., nt. Ed. 2017, 56, 16136.
|
|
(g) Dai, L.-X. Prog. Chem. 2018, 30, 1257. (in Chinese)
|
|
(戴立信, 化学进展, 2018, 30, 1257.)
doi: 10.7536/PC180811 |
|
[5] |
(a) Chan, D. M. T.; Monaco, K. L.; Wang, R.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
doi: 10.1016/S0040-4039(98)00503-6 |
(b) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
|
|
(c) West, M.-J.; Fyfe, J.-W.; Vantourout, J.-C.; Watson, A.-J. Chem. Rev. 2019, 119, 12491.
doi: 10.1021/acs.chemrev.9b00491 |
|
(d) Duan, X.; Liu, N.; Wang, J.; Ma, J. Chin. J. Org. Chem. 2019, 39, 661. (in Chinese)
|
|
(段希焱, 刘宁, 王佳, 马军营, 有机化学, 2019, 39, 661.)
doi: 10.6023/cjoc201808015 |
|
[6] |
Kim, Y.; Chang, S. ACS Catal. 2016, 6, 2341.
doi: 10.1021/acscatal.6b00293 |
[7] |
(a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., nt. Ed. 2009, 48, 5094.
pmid: 30033454 |
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
doi: 10.1021/cr900184e pmid: 30033454 |
|
(c) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843.
doi: 10.1039/C4QO00068D pmid: 30033454 |
|
(d) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.
doi: 10.1021/acscatal.5b00050 pmid: 30033454 |
|
(e) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764.
doi: 10.1039/C5CS00272A pmid: 30033454 |
|
(f) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
doi: 10.1021/ar5004626 pmid: 30033454 |
|
(g) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635.
doi: 10.1021/acs.accounts.6b00022 pmid: 30033454 |
|
(h) Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 1522. (in Chinese)
doi: 10.6023/cjoc201904030 pmid: 30033454 |
|
(张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522.)
doi: 10.6023/cjoc201904030 pmid: 30033454 |
|
(i) Wang, Q.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2019, 77, 690. (in Chinese)
doi: 10.6023/A19060222 pmid: 30033454 |
|
(王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.)
doi: 10.6023/A19060222 pmid: 30033454 |
|
(j) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
doi: 10.1039/c8cs00201k pmid: 30033454 |
|
(k) Liao, G.; Wu, Y.-J. Shi, B.-F. Acta Chim. Sinica 2020, 78, 289. (in Chinese)
doi: 10.6023/A20020027 pmid: 30033454 |
|
(廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78, 289.)
doi: 10.6023/A20020027 pmid: 30033454 |
|
(l) Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37, 647.
doi: 10.1002/cjoc.v37.7 pmid: 30033454 |
|
(m) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788.
doi: 10.1021/acs.chemrev.9b00495 pmid: 30033454 |
|
[8] |
(a) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Wang, M.-M.; Dai, H.-X. Synthesis 2016, 48, 4381.
doi: 10.1055/s-0035-1562795 |
(b) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
doi: 10.1039/C6QO00156D |
|
(c) Wang, S.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2017, 53, 3165.
doi: 10.1039/C6CC09651D |
|
(d) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174.
doi: 10.1002/adsc.v358.8 |
|
(e) Park, J.; Chang, S. Chem.-Asian J. 2018, 13, 1089.
doi: 10.1002/asia.v13.9 |
|
(f) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
doi: 10.1021/acs.chemrev.8b00507 |
|
(g) Yu, W.; Wu, W.; Jiang, H. Chin. J. Chem. 2019, 37, 1158.
doi: 10.1002/cjoc.v37.11 |
|
(h) Khake, S. M.; Chatani, N. Trends Chem. 2019, 1, 524.
doi: 10.1016/j.trechm.2019.06.002 |
|
(i) Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F. Chin. J. Chem. 2020, 38, 635.
doi: 10.1002/cjoc.v38.6 |
|
[9] |
Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
doi: 10.1021/ja061715q |
[10] |
Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D. S.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 632.
doi: 10.1002/adsc.v352:4 |
[11] |
John, A.; Nicholas, K. M. J. Org. Chem. 2011, 76, 4158.
doi: 10.1021/jo200409h |
[12] |
Xu, H.; Qiao, X.; Yang, S.; Shen, Z. J. Org. Chem. 2014, 79, 4414.
doi: 10.1021/jo5003592 |
[13] |
(a) Li, G.; Jia, C.; Chen, Q.; Sun, K.; Zhao, F.; Wu, H.; Wang, Z.; Lv, Y.; Chen, X. Adv. Synth. Catal. 2015, 357, 1311.
doi: 10.1002/adsc.201400883 |
(b) Li, G.; Jia, C.; Sun, K. Org. Lett. 2013, 15, 5198.
doi: 10.1021/ol402324v |
|
[14] |
Yu, H.; Dannenberg, C. A.; Li, Z.; Bolm, C. Chem.-Asian J. 2016, 11, 54.
doi: 10.1002/asia.v11.1 |
[15] |
Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354.
doi: 10.1021/ja412880r pmid: 24527701 |
[16] |
Lee, W.-C. C.; Shen, Y.; Gutierrez, D. A.; Li, J. J. Org. Lett. 2016, 18, 2660.
doi: 10.1021/acs.orglett.6b01105 |
[17] |
Li, Z.; Yu, H.; Bolm, C. Angew. Chem., nt. Ed. 2017, 56, 9532.
|
[18] |
Singh, H.; Sen, C.; Suresh, E.; Panda, A. B.; Ghosh, S. C. J. Org. Chem. 2021, 86, 3261.
doi: 10.1021/acs.joc.0c02603 |
[19] |
Kim, J.-Y.; Park, S.-H.; Ryu, J.; Hwan, S.-C.; Kim, S.-H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110.
doi: 10.1021/ja303527m |
[20] |
Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. 2014, 16, 4702.
doi: 10.1021/ol502010g |
[21] |
Peng, J.; Chen, M.; Xie, Z.; Luo, S.; Zhu, Q. Org. Chem. Front. 2014, 1, 777.
doi: 10.1039/C4QO00143E |
[22] |
Ng, K.-H.; Chan, A.-S.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862.
doi: 10.1021/ja106364r |
[23] |
Li, G.; Jia, C.; Sun, K.; Lv, Y.; Zhao, F.; Zhou, K.; Wu, H. Org. Biomol. Chem. 2015, 13, 3207.
doi: 10.1039/C5OB00135H |
[24] |
Tezuka, N.; Shimojo, K.; Hirano, K.; Komagawa, S.; Yoshida, K.; Wang, C.; Miyamoto, K.; Saito, T.; Takita, R.; Uchiyama, M. J. Am. Chem. Soc. 2016, 138, 9166.
doi: 10.1021/jacs.6b03855 |
[25] |
Xu, L.-L.; Wang, X.; Ma, B.; Yin, M.-X.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. Chem. Sci. 2018, 9, 5160.
doi: 10.1039/c8sc01256c pmid: 29997868 |
[26] |
Begam, H.; Choudhury, R.; Behera, A.; Jana, R. Org. Lett. 2019, 21, 4651.
doi: 10.1021/acs.orglett.9b01546 |
[27] |
Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842.
doi: 10.1246/cl.2006.842 |
[28] |
Tran, L. D.; Roane, J.; Daugulis, O. Chem. Int. Ed. 2013, 52, 6043.
doi: 10.1002/anie.201300135 |
[29] |
Roane, J.; Daugulis, O. J. Am. Chem. Soc. 2016, 138, 4601.
doi: 10.1021/jacs.6b01117 |
[30] |
Liu, J.; Zou, J.; Yao, J.; Chen, G. Adv. Synth. Catal. 2018, 360, 659.
doi: 10.1002/adsc.v360.4 |
[31] |
Sadhu, P.; Punniyamurthy, T. Chem. Commun. 2016, 52, 2803.
doi: 10.1039/C5CC08206D |
[32] |
Singh, B. K.; Polley, A.; Jana, R. J. Org. Chem. 2016, 81, 4295.
doi: 10.1021/acs.joc.6b00659 |
[33] |
Martínez, Á. M.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Commun. 2014, 50, 2801.
doi: 10.1039/c3cc49633c |
[34] |
Li, Q.; Zhang, S.-Y.; He, G.; Ai, Z.; Nack, W. A.; Chen, G. Org. Lett. 2014, 16, 1764.
doi: 10.1021/ol500464x |
[35] |
Pradhan, S.; De, P. B.; Punniyamurthy, T. J. Org. Chem. 2017, 82, 4883.
doi: 10.1021/acs.joc.7b00615 pmid: 28421758 |
[36] |
Zhao, H.-Y.; Wang, H.-Y.; Mao, S.; Xin, M.; Zhang, H.; Zhang, S.-Q. Org. Biomol. Chem. 2017, 15, 6622.
doi: 10.1039/C7OB01353A |
[37] |
Zu, C.; Zhang, T.; Yang, F.; Wu, Y.; Wu, Y. J. Org. Chem. 2020, 85, 12777.
doi: 10.1021/acs.joc.0c01672 |
[38] |
Sahoo, T.; Sarkar, S.; Ghosh, S. C. Tetrahedron Lett. 2021, 67, 152858.
doi: 10.1016/j.tetlet.2021.152858 |
[39] |
Zhu, C.; Yi, M.; Wei, D.; Chen, X.; Wu, Y.; Cui, X. Org. Lett. 2014, 16, 1840.
doi: 10.1021/ol500183w |
[40] |
Hua, Z.; Fang, L.; Wu, S.; Wang, L. Eur. J. Org. Chem. 2016, 2016, 4953.
doi: 10.1002/ejoc.v2016.29 |
[41] |
Shang, M.; Shao, Q.; Sun, S.-Z.; Chen, Y.-Q.; Xu, H.; Dai, H.-X.; Yu, J.-Q. Chem. Sci. 2017, 8, 1469.
doi: 10.1039/c6sc03383k pmid: 28572906 |
[42] |
Kim, H.; Heo, J.; Kim, J.; Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2018, 140, 14350.
doi: 10.1021/jacs.8b08826 |
[43] |
Wu, P.; Huang, W.; Cheng, T.-J.; Lin, H.-X.; Xu, H.; Dai, H.-X. Org. Lett. 2020, 22, 5051.
doi: 10.1021/acs.orglett.0c01632 |
[44] |
Yu, S.-J.; Tang, G.-D.; Li, Y.-Z.; Zhou, X.-K.; Lan, Y.; Li, X.-W. Angew. Chem., nt. Ed. 2016, 55, 8696.
|
[45] |
Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R. J. Org. Chem. 2017, 82, 8933.
doi: 10.1021/acs.joc.7b01343 |
[46] |
Brasche, G.; Buchwald, S. L. Angew. Chem., nt. Ed. 2008, 47, 1932.
|
[47] |
Lv, Y.; Li, Y.; Xiong, T.; Pu, W.; Zhang, H.; Sun, K.; Liu, Q.; Zhang, Q. Chem. Commun. 2013, 49, 6439.
doi: 10.1039/c3cc43129k |
[48] |
Xu, F.; Kang, W.-F.; Wang, X.-N.; Kou, H.-D.; Jin, Z.; Liu, C.-S. RSC Adv. 2017, 7, 51658.
doi: 10.1039/C7RA10682C |
[49] |
Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.
doi: 10.1021/ja1067993 |
[50] |
Masters, K.; Rauws, T. R. M.; Yadav, A. K.; Herrebout, W. A.; Van der Veken, B.; Maes, B. U. W. Chem.-Eur. J. 2011, 17, 6315.
doi: 10.1002/chem.v17.23 |
[51] |
Qu, G.-R.; Liang, L.; Niu, H.-Y.; Rao, W.-H.; Guo, H.-M.; Fossey, J. S. Org. Lett. 2012, 14, 4494.
doi: 10.1021/ol301848v |
[52] |
Zhou, W.; Liu, Y.; Yang, Y.; Deng, G.-J. Chem. Commun. 2012, 48, 10678.
doi: 10.1039/c2cc35425j |
[53] |
Huang, P.-C.; Parthasarathy, K.; Cheng, C.-H. Chem.-Eur. J. 2013, 19, 460.
doi: 10.1002/chem.201203859 |
[54] |
(a) Wang, X.; Jin, Y.; Zhao, Y.; Zhu, L.; Fu, H. Org. Lett. 2012, 14, 452.
doi: 10.1021/ol202884z |
(b) Xu, H.; Fu, H. Chem.-Eur. J. 2012, 18, 1180.
doi: 10.1002/chem.201102794 |
|
[55] |
Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.
doi: 10.1021/ol101490n pmid: 20704415 |
[56] |
Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996.
doi: 10.1021/ja111652v |
[57] |
Chen, L.; Li, C.; Bi, X.; Liu, H.; Qiao, R. Adv. Synth. Catal. 2012, 354, 1773.
doi: 10.1002/adsc.201100946 |
[58] |
Yang, R.; Yu, J.-T.; Sun, S.; Zheng, Q.; Cheng, J. Tetrahedron Lett. 2017, 58, 445.
doi: 10.1016/j.tetlet.2016.12.053 |
[59] |
Subramanian, P.; Kaliappan, K. P. Eur. J. Org. Chem. 2014, 5986.
|
[60] |
Shimizu, M.; Hayama, N.; Kimachi, T.; Inamoto, K. Synthesis 2017, 49, 4183.
doi: 10.1055/s-0036-1588821 |
[61] |
Gui, Q.; Chen, X.; Liu, J.; Tan, Z.; Guo, R.; Yu, W. Synlett 2013, 24, 1016.
doi: 10.1055/s-00000083 |
[62] |
Zhang, Z.; Qian, J.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T.; Sun, K.; Shi, L. Org. Chem. Front. 2016, 3, 344.
doi: 10.1039/C5QO00417A |
[63] |
Wang, X.; Li, N.; Li, Z.; Rao, H. J. Org. Chem. 2017, 82, 10158.
doi: 10.1021/acs.joc.7b01617 |
[64] |
Berrino, R.; Cacchi, S.; Fabrizi, G.; Goggiamani, A. J. Org. Chem. 2012, 77, 2537.
doi: 10.1021/jo202427m |
[65] |
Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 2892.
doi: 10.1021/ol501037j pmid: 24813821 |
[66] |
Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2015, 80, 3242.
doi: 10.1021/acs.joc.5b00307 pmid: 25716755 |
[67] |
Yamamoto, C.; Takamatsu, K.; Hirano, K.; Miura, M. J. Org. Chem. 2017, 82, 9112.
doi: 10.1021/acs.joc.7b01667 pmid: 28783437 |
[68] |
Miura, M.; Hirano, K.; Yamamoto, C.; Takamatsu, K. Heterocycles 2018, 97, 395.
doi: 10.3987/COM-18-S(T)27 |
[69] |
(a) Zhang, Q.; Shi, B.-F. Chem. Sci. 2021, 12, 841.
doi: 10.1039/D0SC05944G |
(b) Suseelan, A. S.; Dutta, A.; Lahiri, G. K.; Maiti, D. Trends Chem. 2021, 3, 188.
doi: 10.1016/j.trechm.2020.11.009 |
|
(c) Chen, Z.; Rong, M.-Y.; Nie, J.; Zhu, X.-F.; Shi, B.-F.; Ma, J.-A. Chem. Soc. Rev. 2019, 48, 4921.
doi: 10.1039/C9CS00086K |
|
(d) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 |
|
(e) Xu, Y.; Dong, G. Chem. Sci. 2018, 9, 1424.
doi: 10.1039/C7SC04768A |
|
(f) Zhou, Z.; Yuan, Y.; Cao, Y.; Qiao, J.; Yao, A.; Zhao, J.; Zuo, W.; Chen, W.; Lei, A. Chin. J. Chem. 2019, 37, 611.
doi: 10.1002/cjoc.v37.6 |
|
[70] |
Wang, Z.; Ni, J.; Kuninobu, Y.; Kanai, M. Angew. Chem., nt. Ed. 2014, 53, 3496.
|
[71] |
Wu, X.; Zhao, Y.; Zhang, G.; Ge, H. Angew. Chem., nt. Ed. 2014, 53, 3706.
|
[72] |
(a) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242.
doi: 10.1002/cjoc.v38.3 |
(b) Han, Y.-Q.; Zhou, T. Chin. J. Chem. 2020, 38, 527
doi: 10.1002/cjoc.v38.5 |
|
[73] |
(a) Gou, Q.; Yang, Y.-W.; Liu, Z.-N.; Qin, J. Chem.-Eur. J. 2016, 22, 16057.
doi: 10.1002/chem.201603370 pmid: 27504671 |
(b) Yamamoto, C.; Takamatsu, K.; Hirano, K.; Miura, M. J. Org. Chem. 2016, 81, 7675.
doi: 10.1021/acs.joc.6b01393 pmid: 27504671 |
|
[74] |
Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491.
doi: 10.1002/adsc.v356.7 |
[75] |
Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Chem. Commun. 2015, 51, 4659.
doi: 10.1039/C4CC10284C |
[76] |
Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. Organometallics 2014, 33, 4076.
doi: 10.1021/om5005868 |
[77] |
Zhang, L.-B.; Zhang, S.-K.; Wei, D.; Zhu, X.; Hao, X.-Q.; Su, J.-H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 1318.
doi: 10.1021/acs.orglett.6b00241 |
[78] |
Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem., nt. Ed. 2018, 57, 5090.
|
[79] |
Yan, Q.; Xiao, T.; Liu, Z.; Zhang, Y. Adv. Synth. Catal. 2016, 358, 2707.
doi: 10.1002/adsc.v358.16 |
[80] |
Du, C.; Li, P.-X.; Zhu, X.; Han, J.-N.; Niu, J.-L.; Song, M.-P. ACS Catal. 2017, 7, 2810.
doi: 10.1021/acscatal.7b00262 |
[81] |
Gao, X.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. J. Am. Chem. Soc. 2018, 140, 4195.
doi: 10.1021/jacs.7b13049 |
[82] |
Patel, P.; Chang, S. ACS Catal. 2015, 5, 853.
doi: 10.1021/cs501860b |
[83] |
Park, J.; Chang, S. Angew. Chem., nt. Ed. 2015, 54, 14103.
|
[84] |
Liang, Y.; Liang, Y.-F.; Tang, C.; Yuan, Y.; Jiao, N. Chem.-Eur. J. 2015, 21, 16395.
doi: 10.1002/chem.v21.46 |
[85] |
Mei, R.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793.
doi: 10.1021/acscatal.5b02661 |
[86] |
Wu, F.; Zhao, Y.; Chen, W. Tetrahedron 2016, 72, 8004.
doi: 10.1016/j.tet.2016.10.032 |
[87] |
Yu, X.; Ma, Q.; Lv, S.; Li, J.; Zhang, C.; Hai, L.; Wang, Q.; Wu, Y. Org. Chem. Front. 2017, 4, 2184.
doi: 10.1039/C7QO00556C |
[88] |
Cheng, H.; Hernández, J. G.; Bolm, C. Adv. Synth. Catal. 2018, 360, 1800.
doi: 10.1002/adsc.v360.9 |
[89] |
Wang, S.-B.; Gu, Q.; You, S.-L. J. Catal. 2018, 361, 393.
doi: 10.1016/j.jcat.2018.03.007 |
[90] |
Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem.,Int. Ed. 2016, 55, 10386.
doi: 10.1002/anie.201603260 |
[91] |
Wang, F.; Wang, H.; Wang, Q.; Yu, S.; Li, X. Org. Lett. 2016, 18, 1306.
doi: 10.1021/acs.orglett.6b00227 pmid: 26954622 |
[92] |
Li, L.; Wang, H.; Yu, S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662.
doi: 10.1021/acs.orglett.6b01716 |
[93] |
Borah, G.; Borah, P.; Patel, P. Org. Biomol. Chem. 2017, 15, 3854.
doi: 10.1039/C7OB00540G |
[94] |
Huang, J.; Huang, Y.; Wang, T.; Huang, Q.; Wang, Z.; Chen, Z. Org. Lett. 2017, 19, 1128.
doi: 10.1021/acs.orglett.7b00120 |
[95] |
Huang, D.-Y.; Yao, Q.-J.; Zhang, S.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Org. Lett. 2019, 21, 951.
doi: 10.1021/acs.orglett.8b03938 |
[96] |
Liu, Y.-H.; Li, P.-X.; Yao, Q.-J.; Zhang, Z.-Z.; Huang, D.-Y.; Le, M.; Song, H.; Liu, L.; Shi, B.-F. Org. Lett. 2019, 21, 1895.
doi: 10.1021/acs.orglett.9b00511 |
[97] |
Wang, F.; Jin, L.; Kong, L.; Li, X. Org. Lett. 2017, 19, 1812.
doi: 10.1021/acs.orglett.7b00583 pmid: 28358202 |
[98] |
Shi, P.; Wang, L.; Chen, K.; Wang, J.; Zhu, J. Org. Lett. 2017, 19, 2418.
doi: 10.1021/acs.orglett.7b00968 |
[99] |
Yetra, S. R.; Shen, Z.; Wang, H.; Ackermann, L. Beilstein J. Org. Chem. 2018, 14, 1546.
doi: 10.3762/bjoc.14.131 |
[100] |
Liang, Y.; Si, X.; Zhang, H.; Yang, D.; Niu, J.; Song, M. Eur. J. Org. Chem. 2021, 2021, 694.
doi: 10.1002/ejoc.v2021.4 |
[101] |
Huang, J.; Ding, J.; Ding, T.-M.; Zhang, S.; Wang, Y.; Sha, F.; Zhang, S.-Y.; Wu, X.-Y.; Li, Q. Org. Lett. 2019, 21, 7342.
doi: 10.1021/acs.orglett.9b02632 pmid: 31478381 |
[102] |
(a) Mo, F.; Dong, G. Science 2014, 345, 68.
doi: 10.1126/science.1254465 pmid: 29796566 |
(b) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
doi: 10.1126/science.aad7893 pmid: 29796566 |
|
(c) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977.
doi: 10.1021/acs.chemrev.6b00554 pmid: 29796566 |
|
(d) Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199.
doi: 10.1016/j.chempr.2017.11.002 pmid: 29796566 |
|
(e) Wu, Y.-J.; Shi, B.-F. Chin. J. Org. Chem. 2020, 40, 3517. (in Chinese)
doi: 10.6023/cjoc202003057 pmid: 29796566 |
|
(吴勇杰, 史炳锋, 有机化学, 2020, 40, 3517.)
doi: 10.6023/cjoc202003057 pmid: 29796566 |
|
(f) St John-Campbell, S.; Bull, J. A. Org. Biomol. Chem. 2018, 16, 4582.
doi: 10.1039/c8ob00926k pmid: 29796566 |
|
(g) Liao, G.; Zhang, T.; Lin, Z.-K.; Shi, B.-F. Angew. Chem., nt. Ed. 2020, 59, 19773.
pmid: 29796566 |
|
[103] |
Ghorai, J.; Reddy, A. C. S.; Anbarasan, P. Chem.-Eur. J. 2016, 22, 16042.
doi: 10.1002/chem.201604111 |
[104] |
Wu, X.; Yang, K.; Zhao, Y.; Sun, H.; Li, G.; Ge, H. Nat. Commun. 2015, 6, 6462.
doi: 10.1038/ncomms7462 |
[105] |
Barsu, N.; Rahman, Md. A.; Sen, M.; Sundararaju, B. Chem.-Eur. J. 2016, 22, 9135.
doi: 10.1002/chem.201601597 |
[106] |
Tan, P. W.; Mak, A. M.; Sullivan, M. B.; Dixon, D. J.; Seayad, J. Angew. Chem., nt. Ed. 2017, 56, 16550.
|
[107] |
Liu, R.-H.; Shan, Q.-C.; Hu, X.-H.; Loh, T.-P. Chem. Commun. 2019, 55, 5519.
doi: 10.1039/C9CC01715A |
[108] |
(a) Fukagawa, S.; Kato, Y.; Tanaka, R.; Kojima, M.; Yoshino, T.; Matsunaga, S. Angew. Chem., nt. Ed. 2018, 58, 1153.
|
(b) Sekine, D.; Ikeda, K.; Fukagawa, S.; Kojima, M.; Yoshino, T.; Matsunaga, S. Organometallics 2019, 38, 3921.
doi: 10.1021/acs.organomet.9b00407 |
|
[109] |
Wu, X.; Zhao, Y.; Ge, H. Chem.-Eur. J. 2014, 20, 9530.
doi: 10.1002/chem.201403356 |
[110] |
Yan, Q.; Chen, Z.; Yu, W.; Yin, H.; Liu, Z.; Zhang, Y. Org. Lett. 2015, 17, 2482.
doi: 10.1021/acs.orglett.5b00990 |
[111] |
Yu, L.; Chen, X.; Liu, D.; Hu, L.; Yu, Y.; Huang, H.; Tan, Z.; Gui, Q. Adv. Synth. Catal. 2018, 360, 1346.
doi: 10.1002/adsc.v360.7 |
[112] |
Yu, L.; Yang, Y.; Yu, Y.-Q.; Liu, D.; Hu, L.; Xiao, Y.-J.; Tan, Z. Org. Lett. 2019, 21, 5634.
doi: 10.1021/acs.orglett.9b01968 |
[1] | 付雅彤, 孙超凡, 张丹, 金成国, 陆居有. 巢式-碳硼烷硼氢键官能化反应研究进展[J]. 有机化学, 2024, 44(2): 438-447. |
[2] | 黄志友, 杨平, 何波, 欧文霞, 袁思雨. 吗啉磺酰胺化合物的设计、合成及其抑制大豆萌芽活性的研究[J]. 有机化学, 2024, 44(1): 309-315. |
[3] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[4] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[5] | 吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763. |
[6] | 丁俊, 史啸坤, 郝宇, 白贺元, 张书宇. 银催化的β,γ-不饱和酰胺的不对称γ-胺化反应[J]. 有机化学, 2023, 43(8): 2946-2952. |
[7] | 董思凡, 李昊龙, 秦源, 范士明, 刘守信. 氨基酸作为瞬态导向基在碳氢键活化反应中的研究进展[J]. 有机化学, 2023, 43(7): 2351-2367. |
[8] | 范威. O2促进下五元环烯胺的C—H亚胺化[J]. 有机化学, 2023, 43(7): 2492-2498. |
[9] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[10] | 黄丽珠, 刘云云, 万结平. 烯胺酮平台构建转化生物质产品Cyrene为增值化合物[J]. 有机化学, 2023, 43(6): 2096-2103. |
[11] | 芦军, 李奇闯, 梁仁校, 贾义霞. 镍催化吡啶/喹啉鎓盐分子内去芳构化芳基加成反应[J]. 有机化学, 2023, 43(5): 1875-1882. |
[12] | 刘育园, 雷雅钦, 杨文, 赵万祥. 钴催化烯胺远程硼氢化[J]. 有机化学, 2023, 43(5): 1761-1771. |
[13] | 蒋旺, 史壮志. 芳烃间/对位选择性碳氢硼化反应研究进展[J]. 有机化学, 2023, 43(5): 1691-1705. |
[14] | 鲍志成, 李慕尧, 王剑波. 铜催化芳基重氮乙酸酯与双[(频哪醇)硼基]甲烷的偶联反应[J]. 有机化学, 2023, 43(5): 1808-1814. |
[15] | 刘双, 邹亮华, 王晓明. 均相钴催化氨硼烷的脱氢及转移氢化反应的研究进展[J]. 有机化学, 2023, 43(5): 1713-1725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||