有机化学 ›› 2022, Vol. 42 ›› Issue (3): 854-862.DOI: 10.6023/cjoc202109014 上一篇 下一篇
研究论文
张瑞芹a, 马仁超b, 傅琴姣b, 陈静a,*(), 马永敏a,b,*()
收稿日期:
2021-09-07
修回日期:
2021-10-14
发布日期:
2021-11-03
通讯作者:
陈静, 马永敏
作者简介:
基金资助:
Ruiqin Zhanga, Renchao Mab, Qinjiao Fub, Jing Chena(), Yongmin Maa,b()
Received:
2021-09-07
Revised:
2021-10-14
Published:
2021-11-03
Contact:
Jing Chen, Yongmin Ma
About author:
Supported by:
文章分享
开发了一种以苯乙酮和2-氨基苯甲酰胺为原料, 在I2/PhNO2介导下合成了喹唑啉-4(3H)-酮的新方法. 该反应涉及苯乙酮与2-氨基苯甲酰胺间的两个C—N键的形成, 接着苯乙酮的C(CO)—C键氧化裂解. 此外, 还进行了由I2/PhNO2和CuBr/K2CO3介导的一锅串联合成喹唑啉-4(3H)-酮的反应.
张瑞芹, 马仁超, 傅琴姣, 陈静, 马永敏. I2/PhNO2介导的芳乙酮C(CO)—C键氧化断裂和2-氨基芳甲酰胺胺化合成喹唑啉-4(3H)-酮[J]. 有机化学, 2022, 42(3): 854-862.
Ruiqin Zhang, Renchao Ma, Qinjiao Fu, Jing Chen, Yongmin Ma. I2/PhNO2 Mediated Synthesis of Quinazolin-4(3H)-ones by C(CO)—C Bond Oxidative Cleavage of Acetophenones and Amination with 2-Aminobenzamides[J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 854-862.
Entry | Variation from the standard conditions | Yield/% |
---|---|---|
1 | — | 72 |
2 | In DMF, DCE, THF, PhCl or EtOH | Trace or 0 |
3 | PhNO2 (5 mmol) | 62 |
4 | PhNO2 (10 mmol) as the solvent | 54 |
5 | No PhNO2 | 59 |
6 | I2 (0.1 mmol) | 45 |
7 | 80 ℃ instead of 110 ℃ | Trace |
8 | 12 h reaction time | 60 |
9 | Reaction under N2 atmosphere | 69 |
10 | No PhNO2 and under N2 atmosphere | Trace |
Entry | Variation from the standard conditions | Yield/% |
---|---|---|
1 | — | 72 |
2 | In DMF, DCE, THF, PhCl or EtOH | Trace or 0 |
3 | PhNO2 (5 mmol) | 62 |
4 | PhNO2 (10 mmol) as the solvent | 54 |
5 | No PhNO2 | 59 |
6 | I2 (0.1 mmol) | 45 |
7 | 80 ℃ instead of 110 ℃ | Trace |
8 | 12 h reaction time | 60 |
9 | Reaction under N2 atmosphere | 69 |
10 | No PhNO2 and under N2 atmosphere | Trace |
[1] |
(a) Jiang, Y.-Y.; Li, G.; Yang, D.; Zhang, Z.; Zhu, L.; Fan, X.; Bi, S. ACS Catal. 2019, 9, 1066.
doi: 10.1021/acscatal.8b03993 |
(b) Ma, R.; He, L.-N.; Liu, A.-H.; Song, Q.-W. Chem. Commun. 2016, 52, 2145.
doi: 10.1039/C5CC09146B |
|
(c) Li, G.; Arisawa, M.; Yamaguchi, M. Chem. Commun. 2014, 50, 4328.
doi: 10.1039/C4CC00816B |
|
(d) Zhang, L.; Bi, X.; Guan, X.; Li, X.; Liu, Q.; Barry, B.-D.; Liao, P. Angew. Chem., Int. Ed. 2013, 52, 11303.
doi: 10.1002/anie.v52.43 |
|
(e) Ding, W.; Song, Q. Org. Chem. Front. 2015, 2, 765.
doi: 10.1039/C5QO00101C |
|
(f) Xu, X.; Ding, W.; Lin, Y.; Song, Q. Org. Lett. 2015, 17, 516.
doi: 10.1021/ol503472x |
|
[2] |
Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Org. Lett. 2015, 17, 2960.
doi: 10.1021/acs.orglett.5b01241 |
[3] |
Tiwari, A. R.; Bhanage, B. M. Asian J. Org. Chem. 2017, 6, 831.
doi: 10.1002/ajoc.v6.7 |
[4] |
Ravi, O.; Shaikh, A.; Upare, A.; Singarapu, K. K.; Bathula, S. R. J. Org. Chem. 2017, 82, 4422.
doi: 10.1021/acs.joc.7b00165 pmid: 28378580 |
[5] |
(a) Ma, R.; Ding, Y.; Chen, R.; Wang, Z.; Wang, L.; Ma, Y. J. Org. Chem. 2021, 86, 310.
doi: 10.1021/acs.joc.0c02095 |
(b) Ding, Y.; Ma, R.; Ma, Y. Tetrahedron Lett. 2021, 70, 153016.
doi: 10.1016/j.tetlet.2021.153016 |
|
[6] |
(a) Maia, R. C.; Silva, L. L.; Mazzeu, E. F.; Fumian, M. M.; de Rezende, C. M.; Doriguetto, A. C.; Correa, R. S.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Bioorg. Med. Chem. 2009, 17, 6517.
doi: 10.1016/j.bmc.2009.08.009 pmid: 21639131 |
(b) Somanadhan, B.; Leong, C.; Whitton, S. R.; Ng, S.; Buss, A. D.; Butler, M. S. J. Nat. Prod. 2011, 74, 1500.
doi: 10.1021/np1006179 pmid: 21639131 |
|
(c) Patil, D. A.; Patil, P. O.; Patil, G. B.; Surana, S. J. Mini-Rev. Med. Chem. 2011, 11, 633.
doi: 10.2174/138955711796268778 pmid: 21639131 |
|
(d) Shen, S.; Li, W.; Wang, J. Nat. Prod. Res. 2013, 27, 2286.
doi: 10.1080/14786419.2013.827190 pmid: 21639131 |
|
[7] |
(a) Chang, X.; Sun, D.; Shi, D.; Wang, G.; Chen, Y.; Zhang, K.; Tan, H.; Liu, J.; Liu, B.; Ouyang, L. Acta Pharm. Sin. B 2021, 11, 156.
doi: 10.1016/j.apsb.2020.06.003 |
(b) Eissa, I. H.; Ibrahim, M. K.; Metwaly, A. M.; Belal, A.; Mehany, A. B. M.; Abdelhady, A. A.; Elhendawy, M. A.; Radwan, M. M.; ElSohly, M. A.; Mahdy, H. A. Bioorg. Chem. 2021, 107, 104532.
doi: 10.1016/j.bioorg.2020.104532 |
|
(c) El-Adl, K.; El-Helby, A.-G. A.; Ayyad, R. R.; Mahdy, H. A.; Khalifa, M. M.; Elnagar, H. A.; Mehany, A. B. M.; Metwaly, A. M.; Elhendawy, M. A.; Radwan, M. M.; ElSohly, M. A.; Eissa, I. H. Bioorg. Med. Chem. 2021, 29, 115872.
doi: 10.1016/j.bmc.2020.115872 |
|
[8] |
(a) Dewangan, D.; Verma, V. S.; Nakhate, K. T.; Tripathi, D. K.; Kashyap, P.; Dhongade, H. Med. Chem. Res. 2016, 25, 2143.
doi: 10.1007/s00044-016-1641-8 |
(b) Patil, D. A.; Surana, S. J. Med. Chem. Res. 2016, 25, 1125.
doi: 10.1007/s00044-016-1552-8 |
|
[9] |
(a) Deres, L.; Bartha, E.; Palfi, A.; Eros, K.; Riba, A.; Lantos, J.; Kalai, T.; Hideg, K.; Sumegi, B.; Gallyas, F.; Toth, K.; Halmosi, R. PLoS One 2014, 9, e102148.
doi: 10.1371/journal.pone.0102148 |
(b) Li, S.; Zuo, S.-J.; Cao, L.; Liu, D.-Z.; Zhang, S.-Q.; Cao, Y.-X. Eur. J. Pharmacol. 2016, 791, 741.
doi: 10.1016/j.ejphar.2016.10.003 |
|
(c) Magyar, K.; Deres, L.; Eros, K.; Bruszt, K.; Seress, L.; Hamar, J.; Hideg, K.; Balogh, A.; Gallyas, F., Jr.; Sumegi, B.; Toth, K.; Halmosi, R. Biochim. Biophys. Acta, Mol. Basis Dis. 2014, 1842, 935.
doi: 10.1016/j.bbadis.2014.03.008 |
|
[10] |
(a) Kothayer, H.; Ibrahim, S. M.; Soltan, M. K.; Rezq, S.; Mahmoud, S. S. Drug Dev. Res. 2019, 80, 343.
doi: 10.1002/ddr.v80.3 |
(b) Ugale, V. G.; Patel, H. M.; Wadodkar, S. G.; Bari, S. B.; Shirkhedkar, A. A.; Surana, S. J. Eur. J. Med. Chem. 2012, 53, 107.
doi: 10.1016/j.ejmech.2012.03.045 |
|
[11] |
(a) Narendhar, B.; Chitra, K.; Alagarsamy, V. A. Pharm. Chem. J. 2021, 55, 54.
doi: 10.1007/s11094-021-02371-7 |
(b) Qian, Y.; Allegretta, G.; Janardhanan, J.; Peng, Z.; Mahasenan, K. V.; Lastochkin, E.; Gozun, M. M. N.; Tejera, S.; Schroeder, V. A.; Wolter, W. R.; Feltzer, R.; Mobashery, S.; Chang, M. J. Med. Chem. 2020, 63, 5287.
doi: 10.1021/acs.jmedchem.0c00153 |
|
(c) Yang, X.; Wang, X.; Wu, M. Chin. J. Org. Chem. 2014, 34, 1015. (in Chinese)
doi: 10.6023/cjoc201311046 |
|
(杨绪红, 王翔, 吴鸣虎, 有机化学, 2014, 34, 1015.)
doi: 10.6023/cjoc201311046 |
|
(d) Wang, S.; Gao, M.; Tan, G.; Ma, H.; Zhao, Y.; Du, H.; Wang, Z.; Chen, H.; Li, X. Chin. J. Org. Chem. 2017, 37, 385. (in Chinese)
doi: 10.6023/cjoc201608031 |
|
(王淑霞, 高梦颖, 谭官海, 马海霞, 赵莹莹, 杜鸿源, 王总帅, 陈华, 李小六, 有机化学, 2017, 37, 385.)
doi: 10.6023/cjoc201608031 |
|
[12] |
(a) Ghosh, P.; Ganguly, B.; Das, S. Org. Biomol. Chem. 2020, 18, 4497.
doi: 10.1039/D0OB00742K pmid: 27477737 |
(b) He, L.; Li, H.; Chen, J.; Wu, X.-F. RSC Adv. 2014, 4, 12065.
doi: 10.1039/C4RA00351A pmid: 27477737 |
|
(c) Maiden, T. M. M.; Harrity, J. P. A. Org. Biomol. Chem. 2016, 14, 8014.
doi: 10.1039/c6ob01402j pmid: 27477737 |
|
[13] |
(a) Wang, C.; Qian, P.-C.; Chen, F.; Cheng, J. Tetrahedron Lett. 2020, 61, 152441.
doi: 10.1016/j.tetlet.2020.152441 |
(b) Wei, L.; Wei, Y.; Zhang, J.; Xu, L. Green Chem. 2021, 23, 4446.
doi: 10.1039/D1GC01063H |
|
(c) Cao, L.; Huo, H.; Zeng, H.; Yu, Y.; Lu, D.; Gong, Y. Adv. Synth. Catal. 2018, 360, 4764.
doi: 10.1002/adsc.201800927 |
|
(d) Ma, Z.; Song, T.; Yuan, Y.; Yang, Y. Chem. Sci. 2019, 10, 10283.
doi: 10.1039/C9SC04060A |
|
(e) Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274.
doi: 10.1021/ol1030266 |
|
(f) Ou, J.; Liu, K.; Wang, Y.; Zhang, H.; Liu, R.; Li, Q.; Wang, Q.; Li, Y.; Rui, C.; Liu, S. Chin. J. Org. Chem. 2014, 34, 526. (in Chinese)
doi: 10.6023/cjoc201310022 |
|
(欧俊军, 刘克昌, 王毅, 张浩, 刘瑞全, 李奇博, 汪清民, 李永强, 芮昌辉, 刘尚钟, 有机化学, 2014, 34, 526.)
doi: 10.6023/cjoc201310022 |
|
(g) Feng, Y.; Tan, G.; Zhou, L.; Wang, S.; Chen, H.; Li, X. Chin. J. Org. Chem. 2017, 37, 429. (in Chinese)
doi: 10.6023/cjoc201608024 |
|
(冯钰欣, 谭官海, 周利凯, 王淑霞, 陈华, 李小六, 有机化学, 2017, 37, 429.)
doi: 10.6023/cjoc201608024 |
|
[14] |
(a) Das, S.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandaõ, P.; Paul, N. D. J. Org. Chem. 2019, 84, 10160.
doi: 10.1021/acs.joc.9b01343 |
(b) Xie, Z.; Lan, J.; Zhu, H.; Lei, G.; Jiang, G.; Le, Z. Chin. Chem. Lett. 2021, 32, 1427.
doi: 10.1016/j.cclet.2020.09.059 |
|
(c) Li, F.; Lu, L.; Liu, P. Org. Lett. 2016, 18, 2580.
doi: 10.1021/acs.orglett.6b00925 |
|
(d) Zhang, Z.; Wang, M.; Zhang, C.; Zhang, Z.; Lu, J.; Wang, F. Chem. Commun. 2015, 51, 9205.
doi: 10.1039/C5CC02785C |
|
(e) Zhong, J.-J.; To, W.-P.; Liu, Y.; Lu, W.; Che, C.-M. Chem. Sci. 2019, 10, 4883.
doi: 10.1039/C8SC05600E |
|
[15] |
(a) Laha, J. K.; Panday, S.; Tomar, M.; Patel, K. V. Org. Biomol. Chem. 2021, 19, 845.
doi: 10.1039/D0OB00360C |
(b) Tian, Q.; Zhang, J.; Xu, L.; Wei, Y. Mol. Catal. 2021, 500, 111345.
|
|
(c) Hu, B.-Q.; Wang, L.-X.; Yang, L.; Xiang, J.-F.; Tang, Y.-L. Eur. J. Org. Chem. 2015, 2015, 4504.
doi: 10.1002/ejoc.201500473 |
|
d) Yan, B.; Lü, X.; Du, H.; Bao, X. Chin. J. Org. Chem. 2016, 36, 207. (in Chinese)
doi: 10.6023/cjoc201506026 |
|
(闫柏任, 吕新阳, 杜欢, 鲍小平, 有机化学, 2016, 36, 207.)
|
|
[16] |
(a) To, T. A.; Vo, Y. H.; Nguyen, H. T. T.; Ha, P. T. M.; Doan, S. H.; Doan, T. L. H.; Li, S.; Le, H. V.; Tu, T. N.; Phan, N. T. S. J. Catal. 2019, 370, 11.
doi: 10.1016/j.jcat.2018.11.031 |
(b) Long, L.; Wang, Y.-H.; Zhuo, J.-X.; Tu, Z.-C.; Wu, R.; Yan, M.; Liu, Q.; Lu, G. Eur. J. Med. Chem. 2018, 157, 1361.
doi: 10.1016/j.ejmech.2018.08.053 |
|
[17] |
(a) Hu, F.-P.; Cui, X.-F.; Lu, G.-Q.; Huang, G.-S. Org. Biomol. Chem. 2020, 18, 4376.
doi: 10.1039/D0OB00225A |
(b) Tavakoli-Hoseini, N.; Davoodnia, A. Chin. J. Chem. 2011, 29, 1685.
doi: 10.1002/cjoc.v29.8 |
|
(c) Chen, G. S.; Kalchar, S.; Kuo, C.-W.; Chang, C.-S.; Usifoh, C. O.; Chern, J.-W. J. Org. Chem. 2003, 68, 2502.
doi: 10.1021/jo0263420 |
|
(d) Kabri, Y.; Gellis, A.; Vanelle, P. Green Chem. 2009, 11, 201.
doi: 10.1039/B816723K |
|
(e) Wu, H.; An, Q.; He, C.; Fan, X.; Guo, W.; Zuo, M.; Xu, C.; Guo, R.; Chu, W.; Sun, Z. Adv. Synth. Catal. 2020, 362, 2459.
doi: 10.1002/adsc.v362.12 |
|
(f) Sun, J.; Zhou, L.; Tan, G.; Wang, S.; Chen, H.; Li, X. Chin. J. Org. Chem. 2017, 37, 455. (in Chinese)
doi: 10.6023/cjoc201607045 |
|
(孙佳婧, 周利凯, 谭官海, 李帅, 王淑霞, 陈华, 李小六, 有机化学, 2017, 37, 455.)
doi: 10.6023/cjoc201607045 |
|
[18] |
(a) Upadhyaya, K.; Thakur, R. K.; Shukla, S. K.; Tripathi, R. P. J. Org. Chem. 2016, 81, 5046.
doi: 10.1021/acs.joc.6b00599 pmid: 27223462 |
(b) Sun, X.; Hu, Y.; Nie, S.-Z.; Yan, Y.-Y.; Zhang, X.-J.; Yan, M. Adv. Synth. Catal. 2013, 355, 2179.
doi: 10.1002/adsc.201300455 pmid: 27223462 |
|
[19] |
(a) Ram, S.; Shaifali; Chauhan, A. S.; Sheetal; Sharma A. K.; Das, P. Chem.-Eur. J. 2019, 25, 14506.
doi: 10.1002/chem.v25.64 pmid: 24810598 |
(b) You, S.; Huang, B.; Yan, T.; Cai, M. J. Organomet. Chem. 2018, 875, 35.
doi: 10.1016/j.jorganchem.2018.09.003 pmid: 24810598 |
|
(c) Jiang, X.; Tang, T.; Wang, J.-M.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2014, 79, 5082.
doi: 10.1021/jo500636y pmid: 24810598 |
|
[20] |
(a) Sharma, R.; Abdullaha, M.; Bharate, S. B. Asian J. Org. Chem. 2017, 6, 1370.
doi: 10.1002/ajoc.v6.10 |
(b) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15, 2713.
doi: 10.1039/c3gc41186a |
|
(c) Qi, X.-X.; Song, Z.-Z.; Gong, J.-L.; Fang, Z.-Y.; Wu, X.-F. Chin. Chem. Lett. 2016, 27, 21.
doi: 10.1016/j.cclet.2015.08.003 |
|
(d) Zhang, M.; Liu, Y.; Wang, X. Chin. J. Org. Chem. 2014, 34, 1682. (in Chinese)
doi: 10.6023/cjoc201402001 |
|
(张梅梅, 刘蕴, 王香善, 有机化学, 2014, 34, 1682.)
doi: 10.6023/cjoc201402001 |
|
[21] |
(a) Zhao, D.; Wang, T.; Li, J.-X. Chem. Commun. 2014, 50, 6471.
doi: 10.1039/C4CC02648A |
(b) Kim, S.; Jeoung, D.; Kim, K.; Lee, S. B.; Lee, S. H.; Park, M. S.; Ghosh, P.; Mishra, N. K.; Hong, S.; Kim, I. S. Eur. J. Org. Chem. 2020, 2020, 7134.
doi: 10.1002/ejoc.v2020.46 |
|
[22] |
Nguyen, T. B.; Hou, J.-Y.; Retailleau, P. Adv. Synth. Catal. 2019, 361, 3337.
doi: 10.1002/adsc.201900371 |
[23] |
Zhu, Y.-P.; Fei, Z.; Liu, M.-C.; Jia, F.-C.; Wu, A.-X. Org. Lett. 2013, 15, 378.
doi: 10.1021/ol303331g |
[24] |
Mohammed, S.; Vishwakarma, R. A.; Bharate, S. B. J. Org. Chem. 2015, 80, 6915.
doi: 10.1021/acs.joc.5b00989 pmid: 26067767 |
[25] |
Liao, Y.; Qi, H.; Chen, S.; Jiang, P.; Zhou, W.; Deng, G.-J. Org. Lett. 2012, 14, 6004.
doi: 10.1021/ol302902e |
[26] |
Zhou, J.; Fang, J. J. Org. Chem. 2011, 76, 7730.
doi: 10.1021/jo201054k |
[27] |
Zhao, D.; Wang, T.; Li, J.-X. Chem. Commun. 2014, 50, 6471.
doi: 10.1039/C4CC02648A |
[28] |
Chen, J.; Liang, E.; Shi, J.; Wu, Y.; Wen, K.; Yao, X.; Tang, X. RSC Adv. 2011, 11, 4966.
doi: 10.1039/D1RA00324K |
[29] |
Potewar, T. M.; Nadaf, R. N.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Synth. Commun. 2005, 35, 231.
doi: 10.1081/SCC-200048433 |
[30] |
Kotipalli, T.; Kavala, V.; Janreddy, D.; Bandi, V.; Kuo, C.-W.; Yao, C.-F. Eur. J. Org. Chem. 2016, 1182.
|
[31] |
Kausar, N.; Roy, I.; Chattopadhyay, D.; Das, A. R. RSC Adv. 2016, 6, 22320.
doi: 10.1039/C6RA00388E |
[32] |
Nguyen, L. H. T.; Nguyen, T. T. T.; Dang, Y. T.; Tran, P. H.; Doan, T. L. H. Asian J. Org. Chem. 2019, 8, 2276.
doi: 10.1002/ajoc.v8.12 |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 曹同阳, 李玮, 王力竞. N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展[J]. 有机化学, 2024, 44(2): 508-524. |
[3] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[4] | 孟宪强, 杨艺, 梁万洁, 王靖涛, 张荣葵, 刘会. 钯催化联烯胺区域选择性芳基酚氧化反应[J]. 有机化学, 2024, 44(1): 224-231. |
[5] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[6] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[7] | 廖旭, 王泽宇, 唐武飞, 林金清. 多孔有机聚合物用于化学固定二氧化碳的研究进展[J]. 有机化学, 2023, 43(8): 2699-2710. |
[8] | 刘露, 张曙光, 胡仁威, 赵晓晓, 崔京南, 贡卫涛. 基于多羟基柱[5]芳烃的酚醛多孔聚合物合成及CO2催化转化[J]. 有机化学, 2023, 43(8): 2808-2814. |
[9] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[10] | 刘长俊, 胡慧玲, 刘宬宏, 朱超杰, 唐天地. 介孔ETS-10沸石担载Pd高效催化内炔氧化制备1,2-二酮[J]. 有机化学, 2023, 43(8): 2953-2960. |
[11] | 吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763. |
[12] | 赵婷, 农旭华, 王佳莉, 许宽毓, 唐敏敏, 易继凌, 韩长日, 陈光英. 长花龙血树茎中抗氧化活性的木脂素类成分研究[J]. 有机化学, 2023, 43(8): 2968-2972. |
[13] | 张晓雨, 李欣燕, 崔冰, 邵志晖, 赵铭钦. 四氢-β-咔啉衍生物的设计、合成及抗氧化性能研究[J]. 有机化学, 2023, 43(8): 2885-2894. |
[14] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[15] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||