有机化学 ›› 2022, Vol. 42 ›› Issue (6): 1770-1777.DOI: 10.6023/cjoc202110030 上一篇 下一篇
研究论文
收稿日期:
2021-10-21
修回日期:
2022-01-04
发布日期:
2022-02-25
通讯作者:
杨志勇
基金资助:
Yadong Li, Pengju Wu, Zhiyong Yang()
Received:
2021-10-21
Revised:
2022-01-04
Published:
2022-02-25
Contact:
Zhiyong Yang
Supported by:
文章分享
发展了一种高效的可见光催化合成2-芳基苯并噁唑的方法. 与传统合成芳基苯并噁唑的方法相比, 该方法反应条件温和, 仅需要Eosin Y作为光催化剂, 不需要任何其他金属催化剂. 该反应副产物仅有CO2, 后处理简单. 在该反应条件下, 含有不同取代基的苯并噁唑与α-酮酸都呈现出非常好的反应活性, 能够合成一系列的芳基苯并噁唑.
李亚东, 吴鹏举, 杨志勇. 可见光催化苯并噁唑与α-酮酸合成芳基苯并噁唑[J]. 有机化学, 2022, 42(6): 1770-1777.
Yadong Li, Pengju Wu, Zhiyong Yang. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1770-1777.
Entry | PC | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|
1 | Eosin Y | EtOH (dry) | 12 | 42 |
2 | Eosin Y | EtOH/H2O (2/0.3 mL) | 12 | 55 |
3 | Eosin Y | H2O | 12 | 0 |
4 | Eosin Y | EtOH/H2O (2/0.3 mL) | 6 | 56 |
5 | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | 60 |
6 | Eosin Y | DMSO/H2O (2/0.3 mL) | 6 | 0 |
7 | Eosin Y | PhCl/H2O (2/0.3 mL) | 6 | 0 |
8 | Eosin Y | CH3CN/H2O (2/0.3 mL) | 6 | 0 |
9 | Eosin Y | DMF/H2O (2/0.3 mL) | 6 | 0 |
10c | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | 8 |
11d | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | 76 |
12e | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | Trace |
13 | — | MeOH/H2O (2/0.3 mL) | 6 | 0 |
Entry | PC | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|
1 | Eosin Y | EtOH (dry) | 12 | 42 |
2 | Eosin Y | EtOH/H2O (2/0.3 mL) | 12 | 55 |
3 | Eosin Y | H2O | 12 | 0 |
4 | Eosin Y | EtOH/H2O (2/0.3 mL) | 6 | 56 |
5 | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | 60 |
6 | Eosin Y | DMSO/H2O (2/0.3 mL) | 6 | 0 |
7 | Eosin Y | PhCl/H2O (2/0.3 mL) | 6 | 0 |
8 | Eosin Y | CH3CN/H2O (2/0.3 mL) | 6 | 0 |
9 | Eosin Y | DMF/H2O (2/0.3 mL) | 6 | 0 |
10c | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | 8 |
11d | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | 76 |
12e | Eosin Y | MeOH/H2O (2/0.3 mL) | 6 | Trace |
13 | — | MeOH/H2O (2/0.3 mL) | 6 | 0 |
[1] |
Wei, C.-X.; Guan, L.-P.; Jia, J.-H.; Cha, K.-Y.; Quan, Z.-S. Arch. Pharmacal Res. 2009, 32, 23.
doi: 10.1007/s12272-009-1114-4 |
(b) Gerova, M.-S.; Stateva, S.-R.; Radonova, E.-M.; Kalenderska, R.-B.; Rusew, R.-I.; Nikolova, R.-P.; Chanev, C.-D.; Shivachev, B.-L.; Apostolova, M.-D.; Petrov, O.-I. Eur. J. Med. Chem. 2016, 120, 121.
doi: 10.1016/j.ejmech.2016.05.012 |
|
[2] |
(a) Seth, K.; Garg, S.-K.; Kumar, R.; Purohit, P.; Meena, V.-S.; Goyal, R.; Banerjee, U.-C.; Chakraborti, A.-K. ACS Med. Chem. Lett. 2014, 5, 512.
doi: 10.1021/ml400500e |
(b) Chanda, K.; Rajasekhar, S.; Maiti, B. Synlett 2017, 28, 521.
doi: 10.1055/s-0036-1588671 |
|
[3] |
(a) Abdeen, S.; Kunkle, T.; Salim, N.; Ray, A.-M.; Mammadova, N.; Summers, C.; Stevens, M.; Ambrose, A.-J.; Park, Y.; Schultz, P.-G.; Horwich, A.-L.; Hoang, Q.-Q.; Chapman, E.; Johnson, S.-M. J. Med. Chem. 2018, 61, 7345.
doi: 10.1021/acs.jmedchem.8b00989 |
(b) Wu, Z.; Bao, X.-L.; Wang, Y.-H.; Anh, N.-T.-P.; Wu, X.-F.; Yan, Y.-J.; Chen, Z.-L. ACS Med. Chem. Lett. 2019, 10, 40.
doi: 10.1021/acsmedchemlett.8b00335 |
|
[4] |
(a) Zhang, W.; Liu, J.; Macho, J.-M.; Jiang, X.; Xie, D.; Jiang, F.; Liu, W.; Fu, L. Eur. J. Med. Chem. 2017, 126, 7.
doi: S0223-5234(16)30872-8 pmid: 30525581 |
(b) Dementiev, A.; Joachimiak, A.; Nguyen, H.; Gorelik, A.; Illes, K.; Shabani, S.; Gelsomino, M.; Gelsomino, E.-Y.; Ahn, E.; Nagar, B.; Doan, N. J. Med. Chem. 2019, 62, 987.
doi: 10.1021/acs.jmedchem.8b01723 pmid: 30525581 |
|
[5] |
Hantzsch, A.-R.; Weber, J.-H. Eur. J. Inorg. Chem. 187, 20, 3118.
|
[6] |
(a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.
doi: 10.1021/ja075802+ pmid: 21744407 |
(b) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733.
doi: 10.1021/ol9001587 pmid: 21744407 |
|
(c) Yamamoto, T.; Muto, K.; Komiyama, M.; Canivet, J.; Yamaguchi, J.; Itami, K. Chem.-Eur. J. 2011, 17, 10113.
doi: 10.1002/chem.201101091 pmid: 21744407 |
|
(d) Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010, 46, 2471.
doi: 10.1039/b920794e pmid: 21744407 |
|
(e) Gao, F.; Kim, B.-S.; Walsh, P.-J. Chem. Commun. 2014, 50, 10661.
doi: 10.1039/C4CC05307A pmid: 21744407 |
|
(f) Abdellaoui, F.; Youssef, C.; Ammar, H.-B.; Roisnel, T.; Soulé, J.-F.; Doucet, H. ACS Catal. 2016, 6, 4248.
doi: 10.1021/acscatal.6b00678 pmid: 21744407 |
|
(g) WangYang, D.; Yu, X.; Fu, H.; Zheng, X.; Chen, H.; Li, R. Chin. J. Org. Chem. 2019, 39, 482. (in Chinese)
doi: 10.6023/cjoc201807050 pmid: 21744407 |
|
( 汪洋点点, 余晓军, 付海燕, 郑学丽, 陈华, 李瑞祥, 有机化学, 2019, 39, 482.)
doi: 10.6023/cjoc201807050 pmid: 21744407 |
|
[7] |
(a) Ranjit, S.; Liu, X. Chem.-Eur. J. 2011, 17, 1105.
doi: 10.1002/chem.201002787 |
(b) Xu, Z.; Wang, Z.; Yu, Z.; Wang, R. Chem.-Eur. J. 2011, 17, 6321.
doi: 10.1002/chem.201100136 |
|
(c) Phan, N.-T.-S.; Nguyen, C.-K.; Nguyen, T.-T.; Truong, T. Catal. Sci. Technol. 2014, 4, 369.
doi: 10.1039/C3CY00503H |
|
[8] |
(a) Xie, K.; Yang, Z.-Y.; Zhou, X.-J.; Li, X.-J.; Wang, S. Z.; Tan, Z.; An, X.-Y.; Guo, C.-C. Org. Lett. 2010, 12, 1564.
doi: 10.1021/ol100296b pmid: 26449132 |
(b) Yang, K.; Chen, X.; Wang, Y.; Li, W.; Kadi, A.; Fun, H.; Sun, H.; Zhang, Y.; Li, G.; Lu, H. J. Org. Chem. 2015, 80, 11065.
doi: 10.1021/acs.joc.5b01450 pmid: 26449132 |
|
(c) Li, Y.; Qian, F.; Wang, M.; Lu, H.; Li, G. Org. Lett. 2017, 19, 5589.
doi: 10.1021/acs.orglett.7b02730 pmid: 26449132 |
|
(d) Tian, W.-F.; Hu, C.-H.; He, K.-H.; He, X.-Y.; Li, Y. Org. Lett. 2019, 21, 6930.
doi: 10.1021/acs.orglett.9b02539 pmid: 26449132 |
|
(e) Rouchet, J.-B.-E. -Y.; Hachem, M.; Schneider, C.; Hoarau, C. ACS Catal. 2017, 7, 5363.
doi: 10.1021/acscatal.7b01330 pmid: 26449132 |
|
[9] |
(a) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411.
doi: 10.1002/anie.200801240 pmid: 18507387 |
(b) Bonnamour, J.; Bolm, C. Org. Lett. 2008, 10, 2665.
doi: 10.1021/ol800744y pmid: 18507387 |
|
(c) Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272.
doi: 10.1021/jo900513z pmid: 18507387 |
|
(d) Guru, M.-M.; Ali, M.-A.; Punniyamurthy, T. J. Org. Chem. 2011, 76, 5295.
doi: 10.1021/jo2005632 pmid: 18507387 |
|
(e) Maleki, B.; Baghayeri, M.; Vahdat, S.-M.; Mohammadzadeh, A.; Akhoondi, S. RSC Adv. 2015, 5, 46545.
doi: 10.1039/C5RA06618B pmid: 18507387 |
|
[10] |
(a) Chen, Y.-X.; Qian, L.-F.; Zhang, W.; Han, B. Angew. Chem. 2008, 47, 9330.
doi: 10.1002/anie.200803381 pmid: 31459336 |
(b) Cho, Y.-H.; Lee, C.-Y.; Ha, D.-C.; Cheon, C.-H. Adv. Synth. Catal. 2012, 354, 2992.
doi: 10.1002/adsc.201200684 pmid: 31459336 |
|
(c) Liu, S.; Chen, R.; Guo, X.; Yang, H.; Deng, G.; Li, C.-J. Green Chem. 2012, 43, 1577.
pmid: 31459336 |
|
(d) Yang, Z.; Chen, X.; Wang, S.; Liu, J.; Xie, K.; Wang, A.; Tan, Z. J. Org. Chem. 2012, 77, 7086.
doi: 10.1021/jo300740j pmid: 31459336 |
|
(e) Patra, A.; James, A.; Das, T.-K.; Biju, A.-T. J. Org. Chem. 2018, 83, 14820.
doi: 10.1021/acs.joc.8b02598 pmid: 31459336 |
|
(f) Nguyen, T. T.; Nguyen, X. T.; Nguyen, T. H.; Tran, P. H. ACS Omega 2019, 4, 368.
doi: 10.1021/acsomega.8b02932 pmid: 31459336 |
|
(g) Nguyen, Q. T.; Hang, A.-H. T.; Nguyen, T.-L. H.; Chaua, D.-K. N.; Tran, P. H. RSC Adv. 2018, 8, 11834.
doi: 10.1039/C8RA01709C pmid: 31459336 |
|
[11] |
(a) Foot, J.-S.; Kanno, H.; Giblin, G.-M.-P.; Taylor, R.-J.-K. Synlett 2002, 1291.
pmid: 19354284 |
(b) Blacker, A.-J.; Farah, M.-M.; Hall, M.-I.; Marsden, S.-P.; Saidi, O.; Williams, J.-M.-J. Org. Lett. 2009, 11, 2039.
doi: 10.1021/ol900557u pmid: 19354284 |
|
(c) Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G.-J. Org. Lett. 2012, 14, 2722.
doi: 10.1021/ol300937z pmid: 19354284 |
|
[12] |
(a) Altenhoff, G.; Glorius, F. Adv. Synth. Catal. 2004, 346, 1661.
doi: 10.1002/adsc.200404182 |
(b) Viirre, R.-D.; Evindar, G.; Batey, R.-A. J. Org. Chem. 2008, 73, 3452.
doi: 10.1021/jo702145d |
|
(c) Yang, Z.; Wang, A.; Chen, X.; Gui, Q.; Liu, J.; Tan, Z.; Wang, H.; Shi, J.-C. Synlett 2013, 24, 1549.
doi: 10.1055/s-0033-1339193 |
|
(d) Endo, Y.; Backvall, J.-E. Chem.-Eur. J. 2012, 18, 13609.
doi: 10.1002/chem.201202187 |
|
(e) Nale, D.-B.; Bhanage, B. M. Synlett 2015, 26, 2835.
doi: 10.1055/s-0035-1560319 |
|
(f) Zhang, R.; Qin, Y.; Zhang, L. Org. Lett. 2017, 19, 5629.
doi: 10.1021/acs.orglett.7b02786 |
|
[13] |
(a) Hein, D.-M.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957, 79, 427.
doi: 10.1021/ja01559a053 pmid: 24195716 |
(b) Bastug, G.; Eviolitte, C.; Markó, I.-E. Org. Lett. 2012, 14, 3502.
doi: 10.1021/ol301472a pmid: 24195716 |
|
(c) Song, Q.; Feng, Q.; Zhou, M. Org. Lett. 2013, 15, 5990.
doi: 10.1021/ol402871f pmid: 24195716 |
|
(d) Wang, L.; Ren, X.; Yu, J.; Jiang, Y.; Cheng, J. J. Org. Chem. 2013, 78, 12076.
doi: 10.1021/jo402106q pmid: 24195716 |
|
(e) Wang, S.-S.; Fu, H.; Shen, Y.; Sun, M.; Li, Y.-M. J. Org. Chem. 2016, 81, 2920.
doi: 10.1021/acs.joc.6b00210 pmid: 24195716 |
|
[14] |
Yang, Z.; Cheng, Y.; Zhou, L. Chin. J. Synth. Chem. 2020, 28, 84. (in Chinese)
|
( 杨志勇, 成园园, 周亮, 合成化学, 2020, 28, 84.)
|
|
[15] |
(a) Prier, C.-K.; Rankic, D.-A.; MacMillan, D.-W.-C. Chem. Rev. 2013, 113, 5322.
pmid: 27070820 |
(b) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
doi: 10.1021/acs.chemrev.5b00662 pmid: 27070820 |
|
(c) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
pmid: 27070820 |
|
(d) Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109.
doi: 10.1039/C8CS00542G pmid: 27070820 |
|
[16] |
(a) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
doi: 10.1021/acs.chemrev.6b00657 |
(b) Wang, C.-S.; Dixneuf, P.-H.; Soulé, J.-F. Chem. Rev. 2018, 118, 7532.
doi: 10.1021/acs.chemrev.8b00077 |
|
(c) Festa, A.-A.; Voskressensky, L.-G.; Eycken, E.-V.-V. Chem. Soc. Rev. 2019, 48, 4401.
doi: 10.1039/C8CS00790J |
|
[17] |
(a) Shi, Q.; Li, P.; Zhu, X.; Wang, L. Green Chem. 2016, 18, 4916.
doi: 10.1039/C6GC00516K pmid: 30990680 |
(b) Xu, W.-T.; Huang, B.; Dai, J.-J.; Xu, J.; Xu, H.-J. Org. Lett. 2016, 18, 3114.
doi: 10.1021/acs.orglett.6b01296 pmid: 30990680 |
|
(c) Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Biomol. Chem. 2016, 14, 7380.
doi: 10.1039/C6OB01113F pmid: 30990680 |
|
(d) Wang, L.; Wang, Y.; Chen, Q.; He, M. Tetrahedron Lett. 2018, 59, 1489.
doi: 10.1016/j.tetlet.2018.03.005 pmid: 30990680 |
|
(e) Raviola, C.; Protti, S.; Ravelli, D.; Fagnoni, M. Green Chem. 2019, 21, 748.
doi: 10.1039/C8GC03810D pmid: 30990680 |
|
(f) Penteado, F.; Lopes, E.-F.; Alves, D.; Perin, G.; Jacob, R. G.; Lenardao, E. J. Chem. Rev. 2019, 119, 7113.
doi: 10.1021/acs.chemrev.8b00782 pmid: 30990680 |
|
[18] |
Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502.
|
[19] |
(a) Das, S.; Samanta, S.; Maji, S.-K.; Samanta, P.-K.; Dutta, A.-K.; Srivastava, D. N.; Adhikary, B.; Biswas, P. Tetrahedron Lett. 2012, 54, 1090.
doi: 10.1016/j.tetlet.2012.12.044 |
(b) Samanta, S.; Das, S.; Biswas, P. J. Org. Chem. 2013, 78, 11184.
doi: 10.1021/jo401445j |
|
[20] |
Yang, Z.; Zhou, L.; Liu, Y.; Lu, H.; Wu, F.; Xie, Y.; Liu, J. ChemistrySelect 2019, 4, 13788.
|
[21] |
(a) Majek, M.; Filace, F.; Wangelin, A. J. V. Beilstein J. Org. Chem. 2014, 10, 981.
doi: 10.3762/bjoc.10.97 |
(b) Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198.
doi: 10.1021/acs.orglett.5b03192 |
|
(c) Yan, D.; Chen, J.; Xiao, W. Angew. Chem., Int. Ed. 2019, 58, 378.
doi: 10.1002/anie.201811102 |
|
(d) Wang, B.; Li, P.; Miao, T.; Zou, L.; Wang, L. Org. Biomol. Chem. 2019, 17, 115.
doi: 10.1039/c8ob02476f |
|
(e) Bosveli, A.; Montagnon, T.; Kalaitzakis, D.; Vassilikogiannakis, G. Org. Biomol. Chem. 2021, 19, 3303.
doi: 10.1039/D1OB00301A |
|
[22] |
Hari, D.-P.; Schroll, P.; König, B. J. Am. Chem.Soc. 2012, 134, 2958.
doi: 10.1021/ja212099r |
[23] |
Wadhwa, C.; Yang, P. R.; West, K. C.; Deming, S. R. Synth. Commun. 2008, 38, 4434.
doi: 10.1080/00397910802369554 |
[1] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[2] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[3] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[4] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[5] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[6] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[7] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[8] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[9] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
[10] | 陈凤娟, 刘罗, 张子露, 曾伟. 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023, 43(10): 3454-3469. |
[11] | 胡朝明, 吴纪红, 吴晶晶, 吴范宏. 直接三氟甲硒基化反应研究进展[J]. 有机化学, 2023, 43(1): 36-56. |
[12] | 潘振涛, 刘彤, 马永敏, 颜剑波, 王亚军. 布朗斯特酸/可见光氧化还原接力催化构建喹唑啉(硫)酮[J]. 有机化学, 2022, 42(9): 2823-2831. |
[13] | 宇世伟, 陈兆华, 陈淇, 林舒婷, 何金萍, 陶冠燊, 汪朝阳. 硫代磺酸酯的合成与应用研究进展[J]. 有机化学, 2022, 42(8): 2322-2330. |
[14] | 张力之, 廖永剑, 陈宁, 黄磊, 周敏. 叔丁醇钾促进的环化和偶联反应[J]. 有机化学, 2022, 42(7): 1950-1959. |
[15] | 孙天义, 张依凡, 孟远倢, 王怡, 朱琦峰, 姜玉新, 刘石惠. 可见光-铜共催化的糖类区域选择性氧烷基化反应[J]. 有机化学, 2022, 42(5): 1414-1422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||