有机化学 ›› 2022, Vol. 42 ›› Issue (2): 353-362.DOI: 10.6023/cjoc202108058 上一篇 下一篇
所属专题: 有机氟化学虚拟合辑
综述与进展
马然松a, 邓周斌a, 王克虎a, 黄丹凤a, 胡雨来a,*(), 闾肖波b
收稿日期:
2021-08-31
修回日期:
2021-10-05
发布日期:
2022-02-24
通讯作者:
胡雨来
基金资助:
Ransong Maa, Zhoubin Denga, Kehu Wanga, Danfeng Huanga, Yulai Hua(), Xiaobo Lüb
Received:
2021-08-31
Revised:
2021-10-05
Published:
2022-02-24
Contact:
Yulai Hu
Supported by:
文章分享
三氟甲基化反应是向有机物中引入氟原子的重要方法. 综述了近年来以CF3Br为三氟甲基源的三氟甲基化反应研究进展, 重点介绍了各类反应涉及到的具体方法、每种方法的特点、适用范围及可能的机理, 并对CF3Br作为三氟甲基源的三氟甲基化反应前景作出展望.
马然松, 邓周斌, 王克虎, 黄丹凤, 胡雨来, 闾肖波. CF3Br参与的三氟甲基化反应研究进展[J]. 有机化学, 2022, 42(2): 353-362.
Ransong Ma, Zhoubin Deng, Kehu Wang, Danfeng Huang, Yulai Hu, Xiaobo Lü. Research Progress of Trifluoromethylation Involving CF3Br[J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 353-362.
[1] |
(a) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine Chemistry, 1st Ed., Elsevier, Amsterdam, 1982.
|
(b) Hiyama, T. Organofluorine Compounds Chemistry and Applications, Springer, Berlin, 2000.
|
|
(c) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell, Chichester, U.K., 2009.
|
|
(d) Kirsch, P.Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd Ed., Wiley-VCH, Weinheim, Germany, 2013.
|
|
(e) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
|
|
[2] |
Inoue, M.; Sumii, Y.; Shibata, N. ACS Omega 2020, 5, 10633.
doi: 10.1021/acsomega.0c00830 |
[3] |
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceňa, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
doi: 10.1021/acs.chemrev.5b00392 pmid: 26756377 |
[4] |
(a) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
pmid: 23834264 |
(b) Dilman, A. D.; Levin, V. V. Eur. J. Org. Chem. 2011, 76, 831.
pmid: 23834264 |
|
(c) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
doi: 10.1021/cr400473a pmid: 23834264 |
|
(d) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
doi: 10.1021/cr500277b pmid: 23834264 |
|
For recent examples see:
doi: 10.1021/jo400202w pmid: 23834264 |
|
(e) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Munoz, S.; Olah, G. A. J. Org. Chem. 2013, 78, 3300.
doi: 10.1021/jo401099e pmid: 23834264 |
|
(f) Sanhueza, I. A; Bonney, K. J.; Nielsen, M. C.; Schoenebeck, F. J. Org. Chem. 2013, 78, 7749.
doi: 10.1021/ol5034018 pmid: 23834264 |
|
(g) Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu, J. Org. Lett. 2015, 17, 298.
pmid: 23834264 |
|
[5] |
(a) Umemoto, T. Chem. Rev. 1996, 96, 1757.
pmid: 25152082 |
(b) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
doi: 10.1021/cr100166a pmid: 25152082 |
|
(c) Barata-Vallejo, S.; Lantaño, B.; Postigo, A. Chem. Eur. J. 2014, 20, 16806.
doi: 10.1002/chem.201404005 pmid: 25152082 |
|
(d) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
doi: 10.1021/cr500223h pmid: 25152082 |
|
(e) Prieto, A.; Baudoin, O.; Bouyssi, D.; Monteiro, N. Chem. Commun. 2016, 52, 869.
doi: 10.1039/C5CC05954B pmid: 25152082 |
|
[6] |
(a) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
doi: 10.1038/nature10647 pmid: 25901659 |
(b) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
doi: 10.1021/ol202174a pmid: 25901659 |
|
(c) Herrmann, A. T.; Smith, L. L.; Zakarian, A. J. Am. Chem. Soc. 2012, 134, 6976.
doi: 10.1021/ja302552e pmid: 25901659 |
|
(d) Li, Y.; Wu, L.; Neumann, H.; Beller, M. Chem. Commun. 2013, 49, 2628.
doi: 10.1039/c2cc36554e pmid: 25901659 |
|
(e) Woźniak, L.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.
doi: 10.1021/jacs.5b03243 pmid: 25901659 |
|
(f) Xiao, H.-W.; Zhang, Z.-Z.; Fang, Y.-W.; Zhu, L.; Li, C.-Z. Chem. Soc. Rev. 2021, 50, 6308.
doi: 10.1039/D1CS00200G pmid: 25901659 |
|
(g) Qiu, Y.; Wei, F.; Ye, L.; Zhao, M. Chin. J. Org. Chem. 2021, 41, 1821. (in Chinese)
pmid: 25901659 |
|
( 邱云亮, 魏凤姣, 叶鎏, 赵旻玥, 有机化学, 2021, 41, 1821.)
doi: 10.6023/cjoc202009036 pmid: 25901659 |
|
[7] |
(a) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.
doi: 10.1039/C6QO00153J |
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
|
(c) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
doi: 10.1021/jm401375q |
|
[8] |
(a) Xie, Q.; Li, L.; Zhu, Z.; Zhang, R.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2018, 57, 13211.
doi: 10.1002/anie.v57.40 pmid: 30080973 |
(b) García-Domínguez, A.; West, T. H.; Primozic, J. J.; Grant, K. M.; Johnston, C. P.; Cumming, G. G.; Leach, A. G.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2020, 142, 14649.
doi: 10.1021/jacs.0c06751 pmid: 30080973 |
|
(c) Li, L.; Ni, C.; Xie, Q.; Hu, M.; Wang, F.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 9971.
doi: 10.1002/anie.v56.33 pmid: 30080973 |
|
(d) Cheung, K. P. S.; Tsui, G. C. Org. Lett. 2017, 19, 2881.
doi: 10.1021/acs.orglett.7b01116 pmid: 30080973 |
|
(e) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 10439.
doi: 10.1002/anie.201404822 pmid: 30080973 |
|
(f) Johnston, C. P.; West, T. H.; Dooley, R. E.; Reid, M.; Jones, A. B.; King, E. J.; Leach, A. G.; Jones, G. C. L. J. Am. Chem. Soc. 2018, 140, 11112.
doi: 10.1021/jacs.8b06777 pmid: 30080973 |
|
(g) Zhao, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2020, 142, 19480.
doi: 10.1021/jacs.0c09977 pmid: 30080973 |
|
(h) Zhang, Z.; He, J.; Zhu, L.; Xiao, H.; Fang, Y.; Li, C. Chin. J. Chem. 2020, 38, 924.
doi: 10.1002/cjoc.v38.9 pmid: 30080973 |
|
[9] |
(a) Gao, C.; Li, B.; Geng, X.; Zhou, Q.; Zhang, X.; Fan, X. Green Chem. 2019, 21, 5113.
doi: 10.1039/C9GC02001B pmid: 31904244 |
(b) Chen, Y.; Ma, G.; Gong, H. Org. Lett. 2018, 20, 4677.
doi: 10.1021/acs.orglett.8b02005 pmid: 31904244 |
|
(c) Gao, X.; Geng, Y.; Han, S.; Liang, A.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59, 1551.
doi: 10.1016/j.tetlet.2018.02.077 pmid: 31904244 |
|
(d) Zhang, B.; Peng, Q.; Guo, D.; Wang, J. Org. Lett. 2020, 22, 443.
doi: 10.1021/acs.orglett.9b04203 pmid: 31904244 |
|
(e) Frűh, N.; Togni, A. Angew. Chem., Int. Ed. 2014, 53, 10813.
doi: 10.1002/anie.201406181 pmid: 31904244 |
|
(f) Zeng, H.; Luo, Z.; Han, X.; Li, C.-J. Org. Lett. 2019, 21, 5948.
doi: 10.1021/acs.orglett.9b02072 pmid: 31904244 |
|
[10] |
(a) Zhang, C. Org. Biomol. Chem. 2014, 12, 6580.
doi: 10.1039/c4ob00671b pmid: 28535057 |
(b) Chen, L.; Ma, P.; Yang, B.; Zhao, X.; Huang, X.; Zhang, J. Chem. Commun. 2021, 57, 1030.
doi: 10.1039/D0CC07502G pmid: 28535057 |
|
(c) Verhoog, S.; Kee, C. W.; Wang, Y.; Khotavivattana, T.; Wilson, T. C.; Kersemans, V.; Smart, S.; Tredwell, M.; Davis, B. G.; Gouverneur, V. J. Am. Chem. Soc. 2018, 140, 1572.
doi: 10.1021/jacs.7b10227 pmid: 28535057 |
|
(d) Gietter-Burch, A. A. S.; Devannah, V.; Watson, D. A. Org. Lett. 2017, 19, 2957.
doi: 10.1021/acs.orglett.7b01196 pmid: 28535057 |
|
[11] |
(a) Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965.
doi: 10.1002/anie.v54.49 |
(b) Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Green Chem. 2021, 23, 496.
doi: 10.1039/D0GC02663H |
|
(c) Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Chem. Sci. 2017, 8, 6633.
doi: 10.1039/C7SC02556D |
|
(d) Zhang, L.; Zhang, G.; Wang, P.; Li, Y.; Lei, A. Org. Lett. 2018, 20, 7396.
doi: 10.1021/acs.orglett.8b03081 |
|
(e) Zhang, S.; Li, L.; Zhang, J.; Zhang, J.; Xue, M.; Xu, K. Chem. Sci. 2019, 10, 3181.
doi: 10.1039/C9SC00100J |
|
(f) Sun, X.; Ma, H.-X.; Mei, T.-S.; Fang, P.; Hu, Y. Org. Lett. 2019, 21, 3167.
doi: 10.1021/acs.orglett.9b00867 |
|
[12] |
(a) Rozen, S.; Hagooly, A. In Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Hoboken, NJ, 2005.
|
(b) Beckers, H.; Bürger, H.; Bursch, P.; Ruppert, I. J. Organomet. Chem. 1986, 316, 41.
doi: 10.1016/0022-328X(86)82073-3 |
|
(c) Tordeux, M.; Langlois, B.; Wakselman, C. J. Org. Chem. 1989, 54, 2452.
doi: 10.1021/jo00271a041 |
|
(d) Teruo, U.; Sumi, I. Tetrahedron Lett. 1990, 31, 3579.
doi: 10.1016/S0040-4039(00)94447-2 |
|
[13] |
Sibille, S.; d’Incan, E.; Leport, L.; Perichon, J. Tetrahedron Lett. 1986, 27, 3129.
|
[14] |
Sibille, S.; Mcharek, S.; Perichon, J. Tetrahedron 1989, 45, 1423.
doi: 10.1016/0040-4020(89)80140-1 |
[15] |
Prakash, G. K. S.; Deffieux, D.; Yudin, A. K.; Olah, G. A. Synlett 1994, 1057.
|
[16] |
Francèse, C.; Tordeux, M.; Wakselman, C. J. Chem. Soc., Chem. Commun. 1987, 642.
|
[17] |
Francèse, C.; Tordeux, M.; Wakselman, C. Tetrahedron Lett. 1988, 29, 1029.
doi: 10.1016/0040-4039(88)85326-7 |
[18] |
Fujiu, M.; Nakamura, Y.; Serizawa, H.; Aikawa, K.; Ito, S.; Mikami, K. Eur. J. Org. Chem. 2012, 7043.
|
[19] |
(a) Chen, Y.-H.; Knochel, P. Angew. Chem., Int. Ed. 2008, 47, 7648.
doi: 10.1002/anie.v47:40 |
(b) Chen, Y.-H.; Sun, M.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 2236.
doi: 10.1002/anie.v48:12 |
|
[20] |
Grobe, J.; Hegge, J. Synlett 1995, 641.
|
[21] |
Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195.
doi: 10.1016/S0040-4039(01)80208-2 |
[22] |
Pawelke, G. J. Fluorine Chem. 1989, 42, 429.
doi: 10.1016/S0022-1139(00)83934-2 |
[23] |
Il'chenko, A. Y. Sci. Synth. 2015, 18, 1135.
|
[24] |
Bűrger, H.; Dittmar, T.; Pawelke, G. J. Fluorine Chem. 1995, 70, 89.
doi: 10.1016/0022-1139(94)03090-M |
[25] |
Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.
doi: 10.1039/c2cs15352a |
[26] |
Tordeux, M.; Langlois, B.; Wakselman, C. J. Chem. Soc., Perkin Trans. 1 1990, 2293.
|
[27] |
Wakselman, C.; Tordeux, M.; Clavel, J.-L.; Langlois, B. J. Chem. Soc., Chem. Commom. 1991, 993.
|
[28] |
Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744. (in Chinese)
doi: 10.6023/A17050202 |
( 张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
doi: 10.6023/A17050202 |
|
[29] |
Tang, R.-Y.; Zhong, P.; Lin, Q.-L. J. Fluorine Chem. 2006, 127, 948.
doi: 10.1016/j.jfluchem.2006.04.002 |
[30] |
Qi, Q.; Shen, Q.; Lu, L. J. Fluorine Chem. 2012, 133, 115.
doi: 10.1016/j.jfluchem.2011.07.005 |
[31] |
(a) Dolbier, W. R. Chem. Rev. 1996, 96, 1557.
doi: 10.1021/cr941142c |
(b) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
doi: 10.1002/anie.201202624 |
|
(c) Li, M.; Kang, H.; Xue, X.-S.; Cheng, J.-P. Acta Chim. Sinica 2018, 76, 988. (in Chinese)
doi: 10.6023/A18080334 |
|
( 李曼, 康会英, 薛小松, 程津培, 化学学报, 2018, 76, 988.)
doi: 10.6023/A18080334 |
|
[32] |
Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270.
doi: 10.1002/anie.201409617 |
[33] |
Chen, Q.-Y.; Yang, Z.-Y.; Zhao, C.-X.; Qiu, Z.-M. J. Chem. Soc., Perkin Trans. 1 1988, 563.
|
[34] |
Natte, K.; Jagadeesh, R. V.; He, L.; Rabeah, J.; Chen, J.; Taeschler, C.; Ellinger, S.; Zaragoza, F; Neumann, H.; Bűckner, A.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 2782.
doi: 10.1002/anie.201511131 |
[35] |
He, L.; Natte, K.; Rabeah, J.; Taeschler, C.; Neumann, H.; Bűckner, A.; Beller, M. Angew. Chem., Int. Ed. 2015, 54, 4320.
doi: 10.1002/anie.201411066 |
[36] |
(a) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 12270.
doi: 10.1002/anie.201606458 |
(b) Zhao, X.; Tu, H.-Y.; Guo, L.; Zhu, S.; Qing, F.-L.; Chu, L. Nat. Commun. 2018, 9, 3488.
doi: 10.1038/s41467-018-05951-6 |
|
[37] |
Zhang, K.-F.; Bian, K.-J.; Li, C.; Sheng, J.; Li, Y.; Wang, X.-S. Angew. Chem., Int. Ed. 2019, 58, 5069.
doi: 10.1002/anie.v58.15 |
[38] |
Zhang, S.; Rotta-Loria, N.; Weniger, F.; Rabeah, J.; Neumann, H.; Taeschler, C.; Beller, M. Chem. Commun. 2019, 55, 6723.
doi: 10.1039/C9CC01971E |
[39] |
Li, Y.; Neumann, H.; Beller, M. Chem. Eur. J. 2020, 26, 6784.
doi: 10.1002/chem.v26.30 |
[40] |
Liu, Y.; Lin, Q.; Xiao, Z.; Zheng, C.; Guo, Y.; Chen, Q.-Y.; Liu, C. Chem. Eur. J. 2019, 25, 1824.
doi: 10.1002/chem.v25.7 |
[41] |
Konduru, N. K.; Dey, S.; Sajid, M.; Owais, M.; Ahmed, N. Eur. J. Med. Chem. 2013, 59, 23.
doi: 10.1016/j.ejmech.2012.09.004 pmid: 23202847 |
[42] |
Li, Q.; Fan, W.; Peng, D.; Meng, B.; Wang, S.; Huang, R.; Liu, S.; Li, S. ACS Catal. 2020, 10, 4012.
doi: 10.1021/acscatal.0c00498 |
[43] |
Ren, Y.-Y.; Zheng, X.; Zhang, X. Synlett 2018, 29, 1028.
doi: 10.1055/s-0036-1591944 |
[44] |
Kitazume, T.; Ishikawa, N. J. Am. Chem. Soc. 1985, 107, 5186.
doi: 10.1021/ja00304a026 |
[1] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[4] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[5] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[6] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[7] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[8] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[9] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[10] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[11] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[12] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[13] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
[14] | 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052. |
[15] | 陈志豪, 范奇, 尹标林, 李清江, 王洪根. α-硼取代羰基类化合物的合成进展[J]. 有机化学, 2023, 43(5): 1706-1712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||