有机化学 ›› 2022, Vol. 42 ›› Issue (8): 2542-2550.DOI: 10.6023/cjoc202201015 上一篇 下一篇
所属专题: 二氧化碳虚拟合辑
研究论文
徐勇a,b, 张永兴a,b, 胡佳a,b, 陈宬a, 原晔a,*(), Francis Verpoorta,b,*()
收稿日期:
2022-01-11
修回日期:
2022-04-02
发布日期:
2022-09-06
通讯作者:
原晔, Francis Verpoort
作者简介:
基金资助:
Yong Xua,b, Yongxing Zhanga,b, Jia Hua,b, Cheng Chena, Ye Yuana(), Francis Verpoorta,b()
Received:
2022-01-11
Revised:
2022-04-02
Published:
2022-09-06
Contact:
Ye Yuan, Francis Verpoort
About author:
Supported by:
文章分享
氨基甲酸酯类化合物在医药、农药、树脂改性、织物整理和有机合成等领域有着广阔的应用前景. 开发了一种利用ZnO/离子液体体系催化二氧化碳(CO2)、仲胺和炔丙醇三组分偶联反应合成各种β-羰基氨基甲酸酯的方法. ZnO/离子液体催化体系具有良好的循环稳定性和底物普适性, 且在常压CO2环境下也展现出较高的催化活性, 这表明其在碳捕集和利用过程中有应用潜力.
徐勇, 张永兴, 胡佳, 陈宬, 原晔, Francis Verpoort. ZnO/离子液体体系催化常压二氧化碳合成β-羰基氨基甲酸酯[J]. 有机化学, 2022, 42(8): 2542-2550.
Yong Xu, Yongxing Zhang, Jia Hu, Cheng Chen, Ye Yuan, Francis Verpoort. Synthesis of β-Oxopropylcarbamates Catalyzed by ZnO/Ionic Liquids under Atmospheric CO2[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2542-2550.
Entry | Zn salt | IL | Yieldb/% |
---|---|---|---|
1 | — | — | — |
2 | Zn(OAc)2 | — | — |
3 | — | [C2C1im][OAc] | — |
4 | Zn(OAc)2 | [C2C1im][OAc] | 34 |
5 | Zn(C3H5O3)2 | [C2C1im][OAc] | 54 |
6 | Zn(ClO4)2 | [C2C1im][OAc] | 49 |
7 | ZnI2 | [C2C1im][OAc] | 56 |
8 | ZnCl2 | [C2C1im][OAc] | 49 |
9 | ZnBr2 | [C2C1im][OAc] | 38 |
10 | ZnO | [C2C1im][OAc] | 73 |
11 | ZnWO4 | [C2C1im][OAc] | 46 |
12 | ZnMoO4 | [C2C1im][OAc] | 9 |
13 | Zn(OTf)2 | [C2C1im][OAc] | 19 |
Entry | Zn salt | IL | Yieldb/% |
---|---|---|---|
1 | — | — | — |
2 | Zn(OAc)2 | — | — |
3 | — | [C2C1im][OAc] | — |
4 | Zn(OAc)2 | [C2C1im][OAc] | 34 |
5 | Zn(C3H5O3)2 | [C2C1im][OAc] | 54 |
6 | Zn(ClO4)2 | [C2C1im][OAc] | 49 |
7 | ZnI2 | [C2C1im][OAc] | 56 |
8 | ZnCl2 | [C2C1im][OAc] | 49 |
9 | ZnBr2 | [C2C1im][OAc] | 38 |
10 | ZnO | [C2C1im][OAc] | 73 |
11 | ZnWO4 | [C2C1im][OAc] | 46 |
12 | ZnMoO4 | [C2C1im][OAc] | 9 |
13 | Zn(OTf)2 | [C2C1im][OAc] | 19 |
Entry | Zn salt | IL | Yieldb/% |
---|---|---|---|
1 | ZnO | [C2C1im][OAc] | 89 |
2 | ZnO | [C2C1im][Et2PO4] | 70 |
3 | ZnO | [C2C1im][BF4] | — |
4 | ZnO | [C2C1im][NTf2] | 15 |
5 | ZnO | [C2C1im]I | 34 |
6 | ZnO | [C2C1im]Br | 75 |
7 | ZnO | [C2C1im][OTf] | — |
8 | ZnO | [C2C1im][HSO4] | — |
9 | ZnO | [C2C1im][NO3] | 22 |
10 | ZnO | [C4C1im][OAc] | 60 |
11 | ZnO | [DBUH][MIm] | — |
12 | ZnO | [DBUH][Im] | — |
13 | ZnO | [DBUH][OAc] | 10 |
Entry | Zn salt | IL | Yieldb/% |
---|---|---|---|
1 | ZnO | [C2C1im][OAc] | 89 |
2 | ZnO | [C2C1im][Et2PO4] | 70 |
3 | ZnO | [C2C1im][BF4] | — |
4 | ZnO | [C2C1im][NTf2] | 15 |
5 | ZnO | [C2C1im]I | 34 |
6 | ZnO | [C2C1im]Br | 75 |
7 | ZnO | [C2C1im][OTf] | — |
8 | ZnO | [C2C1im][HSO4] | — |
9 | ZnO | [C2C1im][NO3] | 22 |
10 | ZnO | [C4C1im][OAc] | 60 |
11 | ZnO | [DBUH][MIm] | — |
12 | ZnO | [DBUH][Im] | — |
13 | ZnO | [DBUH][OAc] | 10 |
Entry | ZnO/mol% | [C2C1im][OAc]/mL | T/℃ | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | 15 | 0.50 | 95 | 18 | 76 |
2 | 20 | 0.50 | 95 | 18 | 89 |
3 | 25 | 0.50 | 95 | 18 | 88 |
4 | 20 | 0.25 | 95 | 18 | 78 |
5 | 20 | 0.75 | 95 | 18 | 87 |
6 | 20 | 0.50 | 85 | 18 | 67 |
7 | 20 | 0.50 | 105 | 18 | 71 |
8 | 20 | 0.50 | 95 | 12 | 73 |
9 | 20 | 0.50 | 95 | 24 | 90 |
Entry | ZnO/mol% | [C2C1im][OAc]/mL | T/℃ | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | 15 | 0.50 | 95 | 18 | 76 |
2 | 20 | 0.50 | 95 | 18 | 89 |
3 | 25 | 0.50 | 95 | 18 | 88 |
4 | 20 | 0.25 | 95 | 18 | 78 |
5 | 20 | 0.75 | 95 | 18 | 87 |
6 | 20 | 0.50 | 85 | 18 | 67 |
7 | 20 | 0.50 | 105 | 18 | 71 |
8 | 20 | 0.50 | 95 | 12 | 73 |
9 | 20 | 0.50 | 95 | 24 | 90 |
Entry | 1 | 2 | 3 | Time/h | Nuclear magnetic yieldb/% (isolated yield/%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | | | | 18 | 89 (80) | |||||
2 | | | | 18 | 86 (79) | |||||
3 | | | | 18 24 | 64 72 (65) | |||||
4 | | | | 18 36 | 65 80 (75) | |||||
5 | | | | 18 24 | 76 85 (75) | |||||
6 | | | | 18 24 | 67 75 (68) | |||||
7 | | | | 18 | 64 (60) | |||||
8 | | | | 18 | 30 (22) | |||||
9 | | | | 18 24 | 41 48 (40) | |||||
10 | | | | 18 24 | 47 58 (49) | |||||
11 | | | | 18 | 71c 77d | |||||
12 | | | | 18 | 0 | |||||
13 | | | | 18 | 0 |
Entry | 1 | 2 | 3 | Time/h | Nuclear magnetic yieldb/% (isolated yield/%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | | | | 18 | 89 (80) | |||||
2 | | | | 18 | 86 (79) | |||||
3 | | | | 18 24 | 64 72 (65) | |||||
4 | | | | 18 36 | 65 80 (75) | |||||
5 | | | | 18 24 | 76 85 (75) | |||||
6 | | | | 18 24 | 67 75 (68) | |||||
7 | | | | 18 | 64 (60) | |||||
8 | | | | 18 | 30 (22) | |||||
9 | | | | 18 24 | 41 48 (40) | |||||
10 | | | | 18 24 | 47 58 (49) | |||||
11 | | | | 18 | 71c 77d | |||||
12 | | | | 18 | 0 | |||||
13 | | | | 18 | 0 |
[1] |
Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.
doi: 10.1039/B912904A |
[2] |
Kumar, A.; Singh, P.; Raizada, P.; Hussain, C. M. Sci. Total Environ. 2022, 806, 150349.
doi: 10.1016/j.scitotenv.2021.150349 |
[3] |
Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112.
doi: 10.1039/c3ee41272e |
[4] |
Arshadi, S.; Vessally, E.; Hosseinian, A.; Soleimani-amiri, S.; Edjlali, L. J. CO2 Util. 2017, 21, 108.
|
[5] |
Chaturvedi, D.; Chaturvedi, A. K.; Mishra, V. Curr. Org. Chem. 2012, 16, 1609.
doi: 10.2174/138527212800840982 |
[6] |
Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. (in Chinese)
doi: 10.6023/cjoc202004030 |
(陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
doi: 10.6023/cjoc202004030 |
|
[7] |
Chaturvedi, D. Curr. Org. Chem. 2011, 15, 1593.
doi: 10.2174/138527211795378173 |
[8] |
Chuqiang, Q.; Ning, C.; Jiaxi, X. Prog. Chem. 2018, 30, 139. (in Chinese)
doi: 10.7536/PC170919 |
(阙楚强, 陈宁, 许家喜, 化学进展, 2018, 30, 139.)
doi: 10.7536/PC170919 |
|
[9] |
Matosevic, A.; Bosak, A. Arh. Hig. Rada Toksikol. 2020, 71, 285.
|
[10] |
Loscher, W.; Sills, G. J.; White, H. S. Epilepsia 2021, 62, 596.
doi: 10.1111/epi.16832 |
[11] |
Chaturvedi, D.; Ray, S. Mon. Chem. 2006, 137, 127.
doi: 10.1007/s00706-005-0423-7 |
[12] |
Schilling, W.; Das, S. ChemSusChem 2020, 13, 6246.
doi: 10.1002/cssc.202002073 pmid: 33107690 |
[13] |
Niemi, T.; Repo, T. Eur. J. Inorg. Chem. 2019, 1180.
|
[14] |
Hosseinian, A.; Ahmadi, S.; Mohammadi, R.; Monfared, A.; Rahmani, Z. J. CO2 Util. 2018, 27, 381.
|
[15] |
Bruneau, C.; Dixncuf, P. H. Tetrahedron Lett. 1987, 28, 2005.
doi: 10.1016/S0040-4039(00)96031-3 |
[16] |
Sasaki, Y.; Dixneuf, P. H. J. Org. Chem. 1987, 52, 4389.
doi: 10.1021/jo00228a046 |
[17] |
Kim, T.-J.; Kwon, K.-H.; Kwon, S.-C.; Baeg, J.-O.; Shim, S.-C.; Lee, D.-H. J. Organomet. Chem. 1990, 389, 205.
doi: 10.1016/0022-328X(90)85412-R |
[18] |
Asadi Zeydabadi, H.; Mehrzad, J.; Motavalizadehkakhky, A.; Zhiani, R. Catal. Lett. 2020, 151, 582.
doi: 10.1007/s10562-020-03313-w |
[19] |
Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Green Chem. 2014, 16, 1633.
doi: 10.1039/c3gc42406e |
[20] |
Song, Q. W.; Chen, W. Q.; Ma, R.; Yu, A.; Li, Q. Y.; Chang, Y.; He, L. N. ChemSusChem 2015, 8, 821.
doi: 10.1002/cssc.201402921 |
[21] |
Wang, Q.; Xiong, W.; Deng, X.; Zhou, X.; Qi, C.; Hu, J. Asian J. Org. Chem. 2018, 8, 179.
|
[22] |
Zhao, Q.-N.; Song, Q.-W.; Liu, P.; Zhang, K.; Hao, J. ChemistrySelect 2018, 3, 6897.
doi: 10.1002/slct.201801422 |
[23] |
Song, Q.-W.; Liu, P.; Han, L.-H.; Zhang, K.; He, L.-N. Chin. J. Chem. 2018, 36, 147.
doi: 10.1002/cjoc.201700572 |
[24] |
Li, X.; Lang, X.; Song, Q.; Guo, Y.; He, L. Chin. J. Org. Chem. 2016, 36, 744. (in Chinese)
doi: 10.6023/cjoc201512037 |
(李雪冬, 郎咸东, 宋清文, 郭亚坤, 何良年, 有机化学, 2016, 36, 744.)
doi: 10.6023/cjoc201512037 |
|
[25] |
Li, D.; Du, M. C.; Bu, C.; Chen, C.; Hu, J.; Zhang, Y. X.; Yuan, Y.; Verpoort, F. J. Mol. Catal. Chin. 2019, 33, 542. (in Chinese)
|
(李迪, 杜旻辰, 卜超, 陈宬, 胡佳, 张永兴, 原晔, 弗朗西斯, 分子催化, 2019, 33, 542.)
|
|
[26] |
Ca, N. D.; Gabriele, B.; Ruffolo, G.; Veltri, L.; Zanetta, T.; Costa, M. Adv. Synth. Catal. 2011, 353, 133.
doi: 10.1002/adsc.201000607 |
[27] |
Chang, L.; Zhiani, R.; Sadeghzadeh, S. M. RSC Adv. 2019, 9, 16955.
doi: 10.1039/C9RA02680K |
[28] |
Fan, L.; Wang, J.; Zhang, X.; Sadeghzadeh, S. M.; Zhiani, R.; Shahroudi, M.; Amarloo, F. Catal. Lett. 2019, 149, 3465.
doi: 10.1007/s10562-019-02894-5 |
[29] |
Zhang, X.; Chen, K. H.; Zhou, Z. H.; He, L. N. ChemCatChem 2020, 12, 4825.
doi: 10.1002/cctc.202000738 |
[30] |
Shi, G.; Zhai, R.; Li, H.; Wang, C. Green Chem. 2021, 23, 592.
doi: 10.1039/D0GC03510F |
[31] |
Zhou, H.; Chen, W.; Liu, J.-H.; Zhang, W.-Z.; Lu, X.-B. Green Chem. 2020, 22, 7832.
doi: 10.1039/D0GC03009K |
[32] |
Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926.
doi: 10.1021/ja017593d |
[33] |
Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. RSC Adv. 2011, 1, 545.
doi: 10.1039/c1ra00307k |
[34] |
Fan, H.-H.; Wang, A.; Yang, S.-R.; Jiang, H.-F. Chin. J. Org. Chem. 2008, 28, 768. (in Chinese)
|
(范晖华, 王阿忠, 杨少容, 江焕峰, 有机化学, 2008, 28, 768.)
|
|
[35] |
Song, D.; Li, D.; Xiao, X.; Cheng, C.; Chaemchuen, S.; Yuan, Y.; Verpoort, F.. J. CO2 Util. 2018, 27, 217.
|
[36] |
Hu, J.; Ma, J.; Zhu, Q.; Qian, Q.; Han, H.; Mei, Q.; Han, B. Green Chem. 2016, 18, 382.
doi: 10.1039/C5GC01870F |
[37] |
Prasad, D.; Patil, K. N.; Chaudhari, N. K.; Kim, H.; Nagaraja, B. M.; Jadhav, A. H. Catal. Rev. 2020, 22,1.
doi: 10.1080/03602458008066528 |
[38] |
Liu, P.; Song, Q.-W.; Zhao, Q.-N.; Li, J.-Y.; Zhang, K. Synthesis 2018, 51, 739.
doi: 10.1055/s-0037-1611058 |
[39] |
Min, Z.; Li, Z.; Wang, H.; Xuan, X.; Zhao, Y.; Wang, J. ACS Sustainable Chem. Eng. 2021, 9, 853.
doi: 10.1021/acssuschemeng.0c07578 |
[40] |
Gurau, G.; Rodriguez, H.; Kelley, S. P.; Janiczek, P.; Kalb, R. S.; Rogers, R. D. Angew. Chem., Int. Ed. 2011, 50, 12024.
doi: 10.1002/anie.201105198 |
[41] |
Song, Q. W.; Zhou, Z. H.; Yin, H.; He, L. N. ChemSusChem 2015, 8, 3967.
doi: 10.1002/cssc.201501176 |
[42] |
Cao, C. S.; Xia, S. M.; Song, Z. J.; Xu, H.; Shi, Y.; He, L. N.; Cheng, P.; Zhao, B. Angew. Chem., Int. Ed. 2020, 59, 8586.
doi: 10.1002/anie.201914596 |
[43] |
Sugiishi, T.; Nakamura, H. J. Am. Chem. Soc. 2012, 134, 2504.
doi: 10.1021/ja211092q pmid: 22283631 |
[1] | 廖旭, 王泽宇, 唐武飞, 林金清. 多孔有机聚合物用于化学固定二氧化碳的研究进展[J]. 有机化学, 2023, 43(8): 2699-2710. |
[2] | 刘露, 张曙光, 胡仁威, 赵晓晓, 崔京南, 贡卫涛. 基于多羟基柱[5]芳烃的酚醛多孔聚合物合成及CO2催化转化[J]. 有机化学, 2023, 43(8): 2808-2814. |
[3] | 宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建. 利用硅氢加成反应催化转化二氧化碳研究进展[J]. 有机化学, 2023, 43(6): 2068-2080. |
[4] | 张旭征, 于凤丽, 袁冰, 解从霞, 于世涛. 钒钼杂多酸盐相转移催化环戊烯氧化制备戊二醛[J]. 有机化学, 2023, 43(4): 1444-1451. |
[5] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[6] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[7] | 刘桂杰, 付正强, 陈飞, 徐彩霞, 李敏, 刘宁. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635. |
[8] | 陈东平, 杨春红, 李明, 赵国孝, 王文鹏, 王喜存, 权正军. 芳炔参与的三组分芳基化反应进展[J]. 有机化学, 2023, 43(2): 503-525. |
[9] | 苏沛锋, 倪金煜, 柯卓锋. 二氧化碳硅氢化及相关转化的均相催化体系研究进展[J]. 有机化学, 2023, 43(10): 3526-3543. |
[10] | 陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480. |
[11] | 黄燕, 张谦, 詹乐武, 侯静, 李斌栋. 可见光诱导甲酸盐参与的烯烃氢羧化反应[J]. 有机化学, 2022, 42(8): 2568-2573. |
[12] | 管怡雯, 常克俭, 孙千林, 徐信. 基于稀土金属路易斯酸碱对化学的研究进展[J]. 有机化学, 2022, 42(5): 1326-1335. |
[13] | 乔辉杰, 杨利婷, 陈雅, 王嘉琳, 孙武轩, 董昊博, 王云威. 温和条件下高效合成咪唑并杂环-肼类衍生物的三组分串联反应[J]. 有机化学, 2022, 42(4): 1188-1197. |
[14] | 朱有财, 丁欣欣, 孙莉, 刘振. CO2/C2H4耦合制备丙烯酸及其衍生物的研究进展[J]. 有机化学, 2022, 42(4): 965-977. |
[15] | 许振丽, 张宗雪, 孟晨湘, 张萧雅, 许凯, 刘澜涛, 王涛, 徐海云, 毛国梁. 无配体条件钯催化内炔的氢膦酰化反应合成(E)-烯烃膦酸酯类化合物[J]. 有机化学, 2021, 41(8): 3264-3271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||