有机化学 ›› 2023, Vol. 43 ›› Issue (5): 1777-1785.DOI: 10.6023/cjoc202301017 上一篇 下一篇
所属专题: 有机硼化学专辑
研究论文
吕敏a,b, 杨爱梅a,*(), 张昱a,b, 孙建婷b, 魏邦国b
收稿日期:
2023-01-18
修回日期:
2023-03-01
发布日期:
2023-04-21
通讯作者:
杨爱梅
基金资助:
Min Lüa,b, Aimei Yanga(), Yu Zhanga,b, Jianting Sunb, Bangguo Weib
Received:
2023-01-18
Revised:
2023-03-01
Published:
2023-04-21
Contact:
Aimei Yang
Supported by:
文章分享
报道了一种Fe(OTf)3催化含有N,O-缩醛结构硼酸酯的简便合成方法, 反应过程历经路易斯酸催化亚胺鎓与有机硼酸室温进行加成反应, 以58%~98%的收率生成了一系列N,O-缩醛硼酸酯化合物. 实验结果表明产物具有硼酸酯的性质, 可以进行偶联反应.
吕敏, 杨爱梅, 张昱, 孙建婷, 魏邦国. Fe(OTf)3催化含有N,O-缩醛结构硼酸酯的合成研究[J]. 有机化学, 2023, 43(5): 1777-1785.
Min Lü, Aimei Yang, Yu Zhang, Jianting Sun, Bangguo Wei. Fe(OTf)3-Catalyzed Synthesis of Boronic Ester Containing N,O-Acetal Structure[J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1777-1785.
Entrya | Additive (equiv.) | Solvent | Yieldb/% | drc |
---|---|---|---|---|
1d | DCM | Trace | ||
2e | DCM | NR | ||
3 | K-10 | DCM | Complex | |
4 | TMSOTf (1.0) | DCM | Complex | |
5 | TMSOTf (0.2) | DCM | NR | |
6 | BF3•Et2O (0.2) | DCM | 30 | >99∶1 |
7 | Ce(OTf)4 (0.2) | DCM | 20 | >99∶1 |
8 | Pr(OTf)3 (0.2) | DCM | 35 | >99∶1 |
9 | Dy(OTf)3 (0.2) | DCM | 39 | >99∶1 |
10 | Tm(OTf)3 (0.2) | DCM | 32 | >99∶1 |
11 | Yb(OTf)3 (0.2) | DCM | 33 | >99∶1 |
12 | Sc(OTf)3 (0.2) | DCM | 50 | >99∶1 |
13 | Ni(OTf)3 (0.2) | DCM | 49 | >99∶1 |
14 | Zn(OTf)2 (0.2) | DCM | 41 | >99∶1 |
15 | Cu(OTf)2 (0.2) | DCM | 51 | >99∶1 |
16 | In(OTf)3 (0.2) | DCM | 34 | >99∶1 |
17 | AuCl3/AgSbF6 (0.2) | DCM | 33 | >99∶1 |
18 | Fe(OTf)3 (0.2) | DCM | 81 | >99∶1 |
19 | Fe(OTf)3 (0.2) | THF | 65 | >99∶1 |
20 | Fe(OTf)3 (0.2) | DCE | 78 | >99∶1 |
21 | Fe(OTf)3 (0.2) | DMF | 60 | >99∶1 |
22 | Fe(OTf)3 (0.2) | Toluene | NR | |
23 | Fe(OTf)3 (0.1) | DCM | 90 | >99:1 |
24 | Fe(OTf)3 (0.05) | DCM | 58 | >99:1 |
Entrya | Additive (equiv.) | Solvent | Yieldb/% | drc |
---|---|---|---|---|
1d | DCM | Trace | ||
2e | DCM | NR | ||
3 | K-10 | DCM | Complex | |
4 | TMSOTf (1.0) | DCM | Complex | |
5 | TMSOTf (0.2) | DCM | NR | |
6 | BF3•Et2O (0.2) | DCM | 30 | >99∶1 |
7 | Ce(OTf)4 (0.2) | DCM | 20 | >99∶1 |
8 | Pr(OTf)3 (0.2) | DCM | 35 | >99∶1 |
9 | Dy(OTf)3 (0.2) | DCM | 39 | >99∶1 |
10 | Tm(OTf)3 (0.2) | DCM | 32 | >99∶1 |
11 | Yb(OTf)3 (0.2) | DCM | 33 | >99∶1 |
12 | Sc(OTf)3 (0.2) | DCM | 50 | >99∶1 |
13 | Ni(OTf)3 (0.2) | DCM | 49 | >99∶1 |
14 | Zn(OTf)2 (0.2) | DCM | 41 | >99∶1 |
15 | Cu(OTf)2 (0.2) | DCM | 51 | >99∶1 |
16 | In(OTf)3 (0.2) | DCM | 34 | >99∶1 |
17 | AuCl3/AgSbF6 (0.2) | DCM | 33 | >99∶1 |
18 | Fe(OTf)3 (0.2) | DCM | 81 | >99∶1 |
19 | Fe(OTf)3 (0.2) | THF | 65 | >99∶1 |
20 | Fe(OTf)3 (0.2) | DCE | 78 | >99∶1 |
21 | Fe(OTf)3 (0.2) | DMF | 60 | >99∶1 |
22 | Fe(OTf)3 (0.2) | Toluene | NR | |
23 | Fe(OTf)3 (0.1) | DCM | 90 | >99:1 |
24 | Fe(OTf)3 (0.05) | DCM | 58 | >99:1 |
[1] |
(a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
doi: 10.1021/cr00039a007 pmid: 23875690 |
(b) Matteson, D. S. J. Org. Chem. 2013, 78, 10009.
doi: 10.1021/jo4013942 pmid: 23875690 |
|
(c) Ranjani, G.; Nagarajan, R. Org. Lett. 2017, 19, 3974.
doi: 10.1021/acs.orglett.7b01669 pmid: 23875690 |
|
(d) Wang, A. E.; Huang, P. Q. Chin. J. Org. Chem. 2021, 41, 3738. (in Chinese)
doi: 10.6023/cjoc202100065 pmid: 23875690 |
|
(王爱娥, 黄培强, 有机化学, 2021, 41, 3738.)
doi: 10.6023/cjoc202100065 pmid: 23875690 |
|
(e) Mei, S. J.; Chen, Z. Chin. J. Org. Chem. 2021, 41, 2914. (in Chinese)
doi: 10.6023/cjoc202100049 pmid: 23875690 |
|
(吉梅山, 朱晨, 有机化学, 2021, 41, 2914.)
doi: 10.6023/cjoc202100049 pmid: 23875690 |
|
(f) Lu, H. X.; Li, B. J. Chin. J. Org. Chem. 2022, 42, 3167. (in Chinese)
doi: 10.6023/cjoc202207040 pmid: 23875690 |
|
(陆候祥, 李必杰, 有机化学, 2022, 42, 3167.)
doi: 10.6023/cjoc202207040 pmid: 23875690 |
|
[2] |
(a) Paramore, A.; Frantz, S. Nat. Rev. Drug Discovery 2003, 2, 611.
doi: 10.1038/nrd1159 |
(b) Sánchez-Serrano, I. Nat. Rev. Drug Discovery 2006, 5, 107.
doi: 10.1038/nrd1959 |
|
(c) Sood, R.; Carloss, H.; Kerr, R.; Lopez, J.; Lee, M.; Druck, M.; Walters, I. B.; Noga, S. J. Am. J. Hematol. 2007, 84, 657.
doi: 10.1002/ajh.v84:10 |
|
(d) Mateos, M. V.; Oriol, A.; López, J. M.; Gutiérrez, N.; Teruel, A. I.; Paz, R.; Laraña, J. G.; Bengoechea, E.; Martín, A.; Mediavilla, J. D.; Palomera, L.; Arriba, F.; González, Y.; Hernández, J. M.; Sureda, A.; Bello, J. L.; Bargay, J.; Peñalver, F. J.; Ribera, J. M.; Mateos, M. L. M.; Sanz, R. G.; Cibeira, M. T.; Ramos, M. L. M.; Vidriales, M. B.; Paiva, B.; Montalbán, M. A.; Lahuerta, J. J.; Bladé, J.; Miguel, J. F. S. Lancet. Oncol. 2010, 11, 934.
doi: 10.1016/S1470-2045(10)70187-X |
|
(e) Robak, P.; Robak, T. Drugs R&D 2019, 19, 73.
|
|
[3] |
(a) Shirley, M. Drugs 2016, 76, 405.
doi: 10.1007/s40265-016-0548-5 pmid: 26846321 |
(b) Skorepova, E.; Čerňa, I.; Vlasáková, R.; Zvoníček, V.; Tkadlecová, M.; Dušek, M. J. Mol. Struct. 2017, 1148, 22.
doi: 10.1016/j.molstruc.2017.07.025 pmid: 26846321 |
|
(c) Salvini, M.; Troia, R.; Giudice, D.; Pautasso, C.; Boccadoro, M.; Larocca, A. Expert. Opin. Drug Metab. Toxicol. 2018, 14, 91.
doi: 10.1080/17425255.2018.1417388 pmid: 26846321 |
|
[4] |
(a) Feng, Z.; Hellberg, M. Tetrahedron Lett. 2000, 41, 5813.
pmid: 30556933 |
(b) Loewer, Y.; Weiss, C.; Biju, A. T.; Fröhlich, R.; Glorius, F. J. Org. Chem. 2011, 76, 2324.
doi: 10.1021/jo102559s pmid: 30556933 |
|
(c) Demetriades, M.; Leung, I. K. H.; Chowdhury, R.; Chan, M. C.; McDonough, M. A.; Yeoh, K. K..; Tian, Y. M.; Claridge, T. D. W.; Ratcliffe, P. J.; Woon, E. C. Y.; Schofield, C. J. Angew. Chem., Int. Ed. 2012, 51, 6672.
doi: 10.1002/anie.201202000 pmid: 30556933 |
|
(d) McClary, C. A.; Taylor, M. S. Carbohyd. Res. 2013, 381, 112.
doi: 10.1016/j.carres.2013.09.001 pmid: 30556933 |
|
(e) Zhang, T.; Chen, X.; Xiao, C.; Zhuang, X.; Chen, X. Polym. Chem. 2017, 8, 6209.
doi: 10.1039/C7PY00915A pmid: 30556933 |
|
(f) Gupta, A. K.; Yin, X.; Mukherjee, M.; Desai, A. A.; Mohammadlou, A.; Jurewicz, K.; Wulff, W. D. Angew. Chem., Int. Ed. 2019, 58, 3361.
doi: 10.1002/anie.201809511 pmid: 30556933 |
|
(g) Chao, S.; Lv, X.; Ma, N.; Shen, Z.; Zhang, F.; Pei, Y.; Pei, Z. Chem. Commun. 2020, 56, 8861.
doi: 10.1039/D0CC04315J pmid: 30556933 |
|
(h) Wang, L. J.; Sheng, X. L.; Wang, J.; Zhang, Y. H. Chin. J. Org. Chem. 2021, 41, 567. (in Chinese)
doi: 10.6023/cjoc202006060 pmid: 30556933 |
|
(王李娟, 盛显良, 王杰, 张玉辉, 有机化学, 2021, 41, 567.)
doi: 10.6023/cjoc202006060 pmid: 30556933 |
|
[5] |
Robinson, L. L.; Self, J. L.; Fusi, A. D.; Bates, M. W.; Read De Alaniz, J.; Hawker, C. J.; Bates, C. M.; Sample, C. S. ACS Macro. Lett. 2021, 10, 857.
doi: 10.1021/acsmacrolett.1c00257 pmid: 35549203 |
[6] |
Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769.
doi: 10.1021/jo01088a011 |
[7] |
Sugihara, J. M.; Bowman, C. M. J. Am. Chem. Soc. 1958, 80, 2443.
doi: 10.1021/ja01543a024 |
[8] |
(a) Ferrier, R. J. Adv. Carbohydr. Chem. Biochem. 1978, 35, 31.
pmid: 26205146 |
(b) Duggan, P. J.; Tyndalla, E. M. J. Chem. Soc., Perkin Trans. 1 2002, 1325.
pmid: 26205146 |
|
(c) Roy, C. D.; Brown, H. C. J. Organomet. Chem. 2007, 692, 784.
doi: 10.1016/j.jorganchem.2006.10.013 pmid: 26205146 |
|
(d) Meiland, M.; Heinze, T.; Guenther, W.; Liebert, T. Tetrahedron Lett. 2009, 50, 469.
doi: 10.1016/j.tetlet.2008.11.043 pmid: 26205146 |
|
(e) Spencer, J.; Baltus, C. B.; Patel, H.; Press, N. J.; Callear, S. K.; Male, L.; Coles, S. J. ACS Comb. Sci. 2011, 13, 24.
pmid: 26205146 |
|
(f) Nishino, T.; Ohya, Y.; Murai, R.; Shirahata, T.; Yamamoto, D.; Makino, K.; Kaji, E. Heterocycles 2012, 84, 1123.
doi: 10.3987/COM-11-S(P)94 pmid: 26205146 |
|
(g) Kaji, E.; Yamamoto, D.; Shirai, Y.; Ishige, K.; Arai, Y.; Shirahata, T.; Makino, K.; Nishino, T. Eur. J. Org. Chem. 2014, 2014, 3536.
pmid: 26205146 |
|
(h) Nakagawa, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.; Toshima, K. Angew. Chem., Int. Ed. 2015, 54, 10935.
doi: 10.1002/anie.201504182 pmid: 26205146 |
|
(i) Kombala, C. J.; Ekanayake, D. I.; Gross, D. E. Tetrahedron Lett. 2017, 58, 3782.
doi: 10.1016/j.tetlet.2017.08.052 pmid: 26205146 |
|
(j) Shimada, N.; Urata, S.; Fukuhara, K.; Tsuneda, T.; Makino, K. Org. Lett. 2018, 20, 6064.
doi: 10.1021/acs.orglett.8b02427 pmid: 26205146 |
|
(k) Kilic, A.; Savci, A.; Alan, Y.; Beyazsakal, L. J. Organomet. Chem. 2020, 917, 121268.
doi: 10.1016/j.jorganchem.2020.121268 pmid: 26205146 |
|
[9] |
(a) Liu, R. C.; Huang, W.; Ma, J. Y.; Wei, B. G.; Lin, G. Q. Tetrahedron Lett. 2009, 50, 4046.
doi: 10.1016/j.tetlet.2009.04.097 |
(b) Feng, T.; Si, C. M.; Liu, R. C.; Fan, X.; Wei, B. G. Chin. J. Org. Chem. 2013, 33, 1291. (in Chinese)
doi: 10.6023/cjoc201304019 |
|
(冯涛, 司长梅, 刘如成, 范翔, 魏邦国, 有机化学, 2013, 33, 1291.)
doi: 10.6023/cjoc201304019 |
|
(c) Wang, X. M.; Liu, Y. W.; Wang, Q. E.; Zhou, Z.; Si, C. M.; Wei, B. G. Tetrahedron Lett. 2019, 75, 260.
|
|
(d) Chen, Z. D.; Chen, Z.; Wang, Q. E.; Si, C. M.; Wei, B. G. Tetrahedron Lett. 2020, 61, 152051.
doi: 10.1016/j.tetlet.2020.152051 |
|
(e) Zhang, Y. X.; Chen, L. Y.; Sun, J. T.; Si, C. M.; Wei, B. G. J. Org. Chem. 2020, 85, 12603.
doi: 10.1021/acs.joc.0c01776 |
|
(f) Han, X. L.; Nie, X. D.; Feng, Y. M.; Wei, B. G.; Si, C. M.; Lin, G. Q. Chin. Chem. Lett. 2021, 32, 3526.
doi: 10.1016/j.cclet.2021.05.003 |
|
(g) Sun, J. T.; Chen, L. Y.; Wei, B. G. Chin. J. Org. Chem. 2021, 41, 4320. (in Chinese)
doi: 10.6023/cjoc202106040 |
|
(孙建婷, 陈玲艳, 魏邦国, 有机化学, 2021, 41, 4320.)
doi: 10.6023/cjoc202106040 |
|
(h) Xu, W. K.; Guo, J. M.; Liu, C. H.; Sun, J. T.; Lv, M.; Wei, B. G. Org. Biomol. Chem. 2022, 20, 5086.
doi: 10.1039/D2OB00900E |
|
[10] |
(a) Ciaravinol, E.; Coronadol, D.; Lanphear, C.; Hoberman, A.; Chanda, S. Int. J. Toxicol. 2016, 35, 530.
doi: 10.1177/1091581816639113 pmid: 27044640 |
(b) Spergel, J. M.; Blaiss, M. S.; Lio, P.; Kessel, A.; Cantrell, W. C.; Takiya, L.; Werth, J. L.; O’Connell, M. A.; Zang, C.; Cork, M. J. Allergy Asthma Proc. 2021, 42, 425.
doi: 10.2500/aap.2021.42.210064 pmid: 27044640 |
|
(c) Gupta, A. K.; Venkataraman, M.; Neil, H.; Shear, N. H.; Piguet, V. J. Dermatol. Treat. 2022, 33, 1213.
doi: 10.1080/09546634.2020.1810607 pmid: 27044640 |
|
(d) Das, B. C.; Shareef, M. A.; Das, S.; Nandwana, N. K.; Das, Y.; Saito, M.; Weiss, L. M. Bioog. Med. Chem. 2022, 63, 116748.
doi: 10.1016/j.bmc.2022.116748 pmid: 27044640 |
|
[11] |
(a) Dimitrijević, E.; Taylor, M. S. ACS Catal. 2013, 3, 945.
doi: 10.1021/cs4000848 |
(b) Hall, D. G. Chem. Soc. Rev. 2019, 48, 3475.
doi: 10.1039/C9CS00191C |
|
[12] |
Han, P.; Si, C. M.; Mao, Z. Y.; Li, H. T.; Wei, B. G.; Du, Z. T. Tetrahedron 2016, 72, 862.
doi: 10.1016/j.tet.2015.12.057 |
[13] |
(a) Liu, Y. W.; Ma, R. J.; Yan, J. H.; Zhou, Z.; Wei, B. G. Org. Biomol. Chem. 2018, 16, 771.
doi: 10.1039/C7OB02989F |
(b) Feng, Y. M.; Nie, X. D.; Sun, J. T.; Xu, W. K.; Wei, B. G. Org. Biomol. Chem. 2021, 19, 7883.
doi: 10.1039/D1OB01370J |
|
[14] |
(a) Han, P.; Mao, Z. Y.; Si, C. M.; Zhou, Z.; Wei, B. G.; Lin, G. Q. J. Org. Chem. 2019, 84, 914.
doi: 10.1021/acs.joc.8b02795 |
(b) Wang, X. M.; Liu, Y. W.; Ma, R. J.; Si, C. M.; Wei, B. G. J. Org. Chem. 2019, 84, 11261.
doi: 10.1021/acs.joc.9b01545 |
|
(c) Han, X. L.; Nie, X. D.; Chen, Z. D.; Si, C. M.; Wei, B. G.; Lin, G. Q. J. Org. Chem. 2020, 85, 13567.
doi: 10.1021/acs.joc.0c01692 |
|
(d) Chen, Z. D.; Xu, W. K.; Guo, J. M.; Chen, L.; Wei, B. G.; Si, C. M.; Lin, G. Q. J. Org. Chem. 2021, 86, 11442.
doi: 10.1021/acs.joc.1c00935 |
|
(e) Sun, J. T.; Li, X.; Yang, T. Y.; Lv, M.; Chen, L. Y.; Wei, B. G. Org. Biomol. Chem. 2022, 20, 6571.
doi: 10.1039/D2OB01196D |
|
(f) Liu, C. H.; Guo, J. M.; Li, X.; Sun, J. T.; Wei, B. G.; Si, C. M. Chem. Commun. 2022, 58, 10841.
doi: 10.1039/D2CC03984B |
|
[15] |
Wang, Q.; Tang, X. Y.; Shi, M. Angew. Chem., Int. Ed. 2016, 55, 10811.
doi: 10.1002/anie.201605066 |
[16] |
(a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
doi: 10.1080/00397918108063618 |
(b) Zhao, X. X.; Chang, H. H.; Li, X.; Wei, W. L. Chin. J. Org. Chem. 2015, 35, 1650. (in Chinese)
|
|
(赵晓霞, 常宏宏, 李兴, 魏文珑, 有机化学, 2015, 35, 1650.)
doi: 10.6023/cjoc201502022 |
|
(c) Chatterjee, A.; Ward, T. R. Catal. Lett. 2016, 146, 820.
doi: 10.1007/s10562-016-1707-8 |
|
(d) Lou, T. S. B.; Michael, C.; Willis, M. C. Tetrahedron 2020, 76, 130782.
doi: 10.1016/j.tet.2019.130782 |
|
(e) Kassel, V. M.; Hanneman, C. M.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2021, 143, 13845.
doi: 10.1021/jacs.1c06419 |
[1] | 陈祖佳, 宇世伟, 周永军, 李焕清, 邱琪雯, 李妙欣, 汪朝阳. BF3•OEt2作为催化剂与合成子在有机合成中的应用进展[J]. 有机化学, 2023, 43(9): 3107-3118. |
[2] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[3] | 刘育园, 雷雅钦, 杨文, 赵万祥. 钴催化烯胺远程硼氢化[J]. 有机化学, 2023, 43(5): 1761-1771. |
[4] | 秦玉承, 徐良轩, 徐佳能, 刘超. 1,2-迁移促进的苄基季铵盐硼化反应研究[J]. 有机化学, 2023, 43(5): 1868-1874. |
[5] | 陈志豪, 范奇, 尹标林, 李清江, 王洪根. α-硼取代羰基类化合物的合成进展[J]. 有机化学, 2023, 43(5): 1706-1712. |
[6] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[7] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[8] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[9] | 李落墨, 杨小会. 离子转移反应的研究进展[J]. 有机化学, 2023, 43(3): 1036-1044. |
[10] | 梁俊秀, 刘亚洲, 王阿木, 吴彦超, 马小锋, 李惠静. 基于原位形成的氮杂邻亚甲基苯醌和卤代萘酚的分子间[4+1]螺环化/去芳香化反应[J]. 有机化学, 2023, 43(11): 3888-3899. |
[11] | 张维露, 陈绍维, 沈晓. 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023, 43(10): 3635-3643. |
[12] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[13] | 宋昊儒, 孙建婷, 吕敏, 刘艺雯, 魏邦国. 三氟甲磺酸酐介导炔酰胺与吡啶加成反应的研究[J]. 有机化学, 2022, 42(8): 2433-2437. |
[14] | 王君姣, 吕瑜瑜, 尚永伟, 崔振丽, 王克虎, 黄丹凤, 胡雨来. α-羟基酮类化合物参与的反应研究进展[J]. 有机化学, 2022, 42(8): 2300-2321. |
[15] | 李婧婕, 王宇豪, 孟甜甜, 黄毅勇. 1,3-二氢-3-亚烷基-吲哚-2-酮的膦催化合成研究[J]. 有机化学, 2022, 42(7): 2222-2228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||