有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3119-3134.DOI: 10.6023/cjoc202302009 上一篇 下一篇
综述与进展
收稿日期:
2023-02-09
修回日期:
2023-03-22
发布日期:
2023-05-05
作者简介:
† 共同第一作者.
基金资助:
Xiaoyang Gao, Ruirui Zhai, Xun Chen(), Shuojin Wang()
Received:
2023-02-09
Revised:
2023-03-22
Published:
2023-05-05
Contact:
E-mail: About author:
† These authors contributed equally to this work.
Supported by:
文章分享
过渡金属催化导向的C—H键活化反应因具有较高的原子经济性和区域选择性, 为一系列多样性的有机分子的制备提供了一种简便有效的合成渠道. 在众多偶联试剂中, 碳酸亚乙烯酯作为一类新颖、多角色的偶联试剂而被广泛应用于C—H键官能团化反应中. 综述了碳酸亚乙烯酯参与C—H键活化反应的研究进展, 并对其发展前景进行了讨论.
高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134.
Xiaoyang Gao, Ruirui Zhai, Xun Chen, Shuojin Wang. Recent Progress in C—H Bond Activation Reaction with Vinylene Carbonate[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3119-3134.
[1] |
For selected review, see (a) He Y.; Huang, Z.; Wu, K.; Ma, J.; Zhou, Y. G.; Yu, Z. Chem. Soc. Rev. 2022, 51, 2759.
doi: 10.1039/D1CS00895A |
(b) Murali K.; Machado L. A.; Carvalho R. L.; Pedrosa L. F.; Mukherjee R.; Da Silva Júnior E. N.; Maiti D. Chem.-Eur. J. 2021, 27, 12453.
doi: 10.1002/chem.v27.49 |
|
(c) Liu B.; Yang L.; Li P.; Wang F.; Li X. Org. Chem. Front. 2021, 8, 1085.
doi: 10.1039/D0QO01159B |
|
[2] |
Kumrua B.; Bicak N. RSC Adv. 2015, 5, 30936.
doi: 10.1039/C5RA02783G |
[3] |
Fasulo F.; Munoz-Garcia A. B.; Massaro A.; Crescenzi O.; Huang C.; Pavone M. J. Mater. Chem. A 2023, 11, 5660.
doi: 10.1039/D2TA08772C |
[4] |
Taffin C.; Kreutler G.; Bourgeois D.; Clotb E.; Périgauda C. New J. Chem. 2010, 34, 517.
doi: 10.1039/b9nj00536f |
[5] |
Ghosh K.; Nishii Y.; Miura M. ACS Catal. 2019, 9, 11455.
doi: 10.1021/acscatal.9b04254 |
[6] |
(a) Bettica P.; Squassante L.; Groeger J. A.; Gennery B.; Winsky- Sommerer R.; Dijk D.-J. Neuropsychopharmacology 2012, 37, 1224.
doi: 10.1038/npp.2011.310 pmid: 2153208 |
(b) Halfpenny P. R.; Horwell D. C.; Hughes J.; Hunter J. C.; Rees D. C. J. Med. Chem. 1990, 33, 286.
pmid: 2153208 |
|
[7] |
Kitano J.; Nishii Y.; Miura M. Org. Lett. 2022, 24, 5679.
doi: 10.1021/acs.orglett.2c02030 |
[8] |
Li X.; Huang T.; Song Y.; Qi Y.; Li L.; Li Y.; Xiao Q.; Zhang Y. Org. Lett. 2020, 22, 5925.
doi: 10.1021/acs.orglett.0c02016 |
[9] |
Shen B.; Liu S.; Zhu L.; Zhong K.; Liu F.; Chen H.; Bai R.; Lan Y. Organometallics 2020, 39, 2813.
doi: 10.1021/acs.organomet.0c00248 |
[10] |
(a) Khan I.; Ibrar A.; Abbas N.; Saeed A. Eur. J. Med. Chem. 2014, 76, 193.
doi: 10.1016/j.ejmech.2014.02.005 pmid: 30908968 |
(b) Rakesh K. P.; Kumara H. K.; Manukumar H. M.; Gowda D. C. Bioorg. Chem. 2019, 87, 252.
doi: S0045-2068(19)30088-4 pmid: 30908968 |
|
[11] |
(a) Sun J.; Tan Q.; Yang W.; Liu B.; Xu B. Adv. Synth. Catal. 2014, 356, 388.
doi: 10.1002/adsc.v356.2/3 |
(b) Chen J.; Natte K.; Spannenberg A.; Neumann H.; Langer P.; Beller M.; Wu X.-F. Angew. Chem. 2014, 126, 7709.
doi: 10.1002/ange.201402779 |
|
(c) Liang D.; He Y.; Zhu Q. Org. Lett. 2014, 16, 2748.
doi: 10.1021/ol501070g |
|
[12] |
Wang L.; Jiang K.-C.; Zhang N.; Zhang Z.-H. Asian J. Org. Chem. 2021, 10, 1671.
doi: 10.1002/ajoc.v10.7 |
[13] |
Wang Z.-H.; Wang H.; Wang H.; Li L.; Zhou M.-D. Org. Lett. 2021, 23, 995.
doi: 10.1021/acs.orglett.0c04200 |
[14] |
Chen Y.; Huang X.; Xu Y.; Li J.; Lai R.; Guan M.; Wu Y. Synlett 2021, 32, 1963.
doi: 10.1055/a-1608-5381 |
[15] |
Nan J.; Huang G.; Hu Y.; Wang B. Chin. J. Org. Chem. 2023, 43, 1537. (in Chinese)
doi: 10.6023/cjoc202210003 |
(南江, 黄冠杰, 胡岩, 王波, 有机化学, 2023, 43, 1537.)
doi: 10.6023/cjoc202210003 |
|
[16] |
Shang X.-F.; Morris-Natschke S. L.; Liu Y.-Q.; Guo X.; Xu X.-S.; Goto M.; Li J.-C.; Yang G.-Z.; Lee K.-H. Med. Res. Rev. 2018, 38, 775.
doi: 10.1002/med.2018.38.issue-3 |
[17] |
Hu Y.; Nan J.; Yin J.; Huang G.; Ren X.; Ma Y. Org. Lett. 2021, 23, 8527.
doi: 10.1021/acs.orglett.1c03231 |
[18] |
Zhao X.; Pang H.; Huang D.; Liu G.; Hu J.; Xiang Y. Angew. Chem., Int. Ed. 2022, 61, e202208833.
doi: 10.1002/anie.v61.41 |
[19] |
Huang X.; Xu Y.; Li J.; Lai R.; Luo Y.; Wang Q.; Yang Z.; Wu Y. Chin. Chem. Lett. 2021, 32, 3518.
doi: 10.1016/j.cclet.2021.04.058 |
[20] |
(a) Hu Y.; Wang C. ChemCatChem 2019, 11, 1167.
doi: 10.1002/cctc.v11.4 |
(b) Hu Y.; Zhou B.; Chen H.; Wang C. Angew. Chem., Int. Ed. 2018, 57, 12071.
doi: 10.1002/anie.v57.37 |
|
(c) Liu T.; Hu Y.; Yang Y.; Wang C. CCS Chem. 2021, 3, 749.
doi: 10.31635/ccschem.020.202000206 |
|
[21] |
Li Y.; Wang H.; Li Y.; Li Y.; Sun Y.; Xia C.; Li Y. J. Org. Chem. 2021, 86, 18204.
doi: 10.1021/acs.joc.1c02473 |
[22] |
(a) Saeed A. Eur. J. Med. Chem. 2016, 116, 290.
doi: 10.1016/j.ejmech.2016.03.025 |
(b) Saddiqa A.; Usman M.; Cakmak O. Turk. J. Chem. 2017, 41, 153.
doi: 10.3906/kim-1604-66 |
|
[23] |
Mihara G.; Ghosh K.; Nishii Y.; Miura M. Org. Lett. 2020, 22, 5706.
doi: 10.1021/acs.orglett.0c02112 pmid: 32638595 |
[24] |
Wang L.; Shao Y.; Chen F.; Qian P.-C.; Cheng J. Chin. J. Org. Chem. 2022, 42, 242. (in Chinese)
doi: 10.6023/cjoc202106023 |
(王璐, 邵莺, 陈帆, 钱鹏程, 成江, 有机化学, 2022, 42, 242.)
doi: 10.6023/cjoc202106023 |
|
[25] |
Ghosh K.; Nishii Y.; Miura M. ACS Catal. 2019, 9, 11455.
doi: 10.1021/acscatal.9b04254 |
[26] |
Ghosh K.; Nishii Y.; Miura M. Org. Lett. 2020, 22, 3547.
doi: 10.1021/acs.orglett.0c00975 |
[27] |
Liu M.; Sui X.; Wen J.; Li Q.; Liu X.; Wang X.; Wang X.; Yan K. Eur. J. Org. Chem. 2023, 43, 153.
|
[28] |
Kumar P.; Kapur M. Chem. Commun. 2022, 58, 4476.
doi: 10.1039/D2CC01048H |
[29] |
(a) Han Y. T.; Jung J.-W.; Kim N.-J. Curr. Org. Chem. 2017, 21, 1265.
doi: 10.2174/1385272821666170221150901 |
(b) Szumilak M.; Stanczak A. Molecules 2019, 24, 2271.
doi: 10.3390/molecules24122271 |
|
[30] |
Kim S.; Choi S. B.; Kang J. Y.; An W.; Lee S. H.; Oh H.; Ghosh P.; Mishra N. K.; Kim I. S. Asian J. Org. Chem. 2021, 10, 1.
doi: 10.1002/ajoc.v10.1 |
[31] |
(a) Zhang G.; Miao J.; Zhao Y.; Ge H. Angew. Chem., Int. Ed. 2012, 51, 8318.
doi: 10.1002/anie.v51.33 |
(b) Lan C.; Tian Z.; Liang X.; Gao M.; Liu W.; An Y.; Fu W.; Jiao G.; Xiao J.; Xu B. Adv. Synth. Catal. 2017, 359, 3735.
doi: 10.1002/adsc.v359.21 |
|
[32] |
Huang G.; Yu J.-T.; Pan C. Eur. J. Org. Chem. 2022, 2022, e202200279.
|
[33] |
Zhang S.; Hu S.; Wang K.; Yang Z.; Liu H.; Wang J. Adv. Synth. Catal. 2023, 365, 238.
doi: 10.1002/adsc.v365.2 |
[34] |
(a) Singh R. B.; Mahanta S.; Guchhait N.; Photochem J. J. Photochem. Photobiol., B 2008, 91, 1.
doi: 10.1016/j.jphotobiol.2007.12.006 |
(b) Jin Q.; Wang F.; Chen S.; Zhou L.; Jiang H.; Zhang L.; Liu M. Chem. Asian J. 2020, 15, 319.
doi: 10.1002/asia.v15.2 |
|
[35] |
Liu M.; Yan K.; Wen J.; Liu W.; Wang M.; Wang L.; Wang X. Adv. Synth. Catal. 2022, 364, 512.
doi: 10.1002/adsc.v364.3 |
[36] |
(a) Meng Y.; Yu B.; Huang H.; Peng Y.; Li E.; Yao Y.; Song C.; Yu W.; Zhu K.; Wang K.; Yi D.; Du J.; Chang J. Med. Chem. 2021, 64, 925.
doi: 10.1021/acs.jmedchem.0c02005 pmid: 33215494 |
(b) Feng X.; Liao D.; Liu D.; Ping A.; Li Z.; Bian J. J. Med. Chem. 2020, 63, 15115.
doi: 10.1021/acs.jmedchem.0c00925 pmid: 33215494 |
|
[37] |
Yu Y.; Wang Y.; Li B.; Tan Y.; Zhao H.; Li Z.; Zhang C.; Ma W. Adv. Synth. Catal. 2022, 364, 838.
doi: 10.1002/adsc.v364.4 |
[38] |
Nan J.; Ma Q.; Yin J.; Liang C.; Tian L.; Ma Y. Org. Chem. Front. 2021, 8, 1764.
doi: 10.1039/D1QO00040C |
[39] |
Hu F.-P.; Zhang X.-G.; Wang M.; Wang H.-S.; Huang G.-S. Chem. Commun. 2021, 57, 11980.
doi: 10.1039/D1CC05059A |
[40] |
Park M. S.; Moon K.; Oh H.; Lee J. Y.; Ghosh P.; Kang J. Y.; Park J. S.; Mishra N. K.; Kim I. S. Org. Lett. 2021, 23, 5518.
doi: 10.1021/acs.orglett.1c01866 pmid: 34228466 |
[41] |
Zhang W.-J.; Li C.; Wang B.-C.; Gao H.; Li H.-J. Chin. J. Org. Chem. 2022, 42, 172. (in Chinese)
doi: 10.6023/cjoc202107038 |
(张文杰, 李超, 王博超, 高慧, 李洪基, 有机化学, 2022, 42, 172.)
doi: 10.6023/cjoc202107038 |
|
[42] |
Wang C.; Fan X.; Chen F.; Qian P.-C.; Cheng J. Chem. Commun. 2021, 57, 3929.
doi: 10.1039/D1CC00882J |
[43] |
Nan J.; Yin J.; Gong X.; Hu Y.; Ma Y. Org. Lett. 2021, 23, 8910.
doi: 10.1021/acs.orglett.1c03404 |
[44] |
(a) Sreedevi R.; Saranya S.; Rohit K. R.; Anilkumar G. Adv. Synth. Catal. 2019, 361, 2236.
doi: 10.1002/adsc.v361.10 |
(b) Hashem H.; ElBakri Y. Arabian J. Chem. 2021, 14, 103418.
doi: 10.1016/j.arabjc.2021.103418 |
|
[45] |
Hu W.; Pi C.; Hu D.; Han X.; Wu Y.; Cui X. Org. Lett. 2022, 24, 2613.
doi: 10.1021/acs.orglett.2c00580 |
[46] |
Kato M.; Ghosh K.; Nishii Y.; Miura M. Chem. Commun. 2021, 57, 8280.
doi: 10.1039/D1CC03362J |
[47] |
Hu W.; Wang X.; Yu X.; Zhu X.; Hao X.-Q.; Song M.-P. Asian J. Org. Chem. 2021, 10, 2557.
doi: 10.1002/ajoc.v10.10 |
[48] |
Li B.-S.; Guo H.-X.; Sun W.; Sun M. Tetrahedron Lett. 2022, 99, 153854.
doi: 10.1016/j.tetlet.2022.153854 |
[49] |
Liu M.; Yan K.; Wen J.; Shang W.; Sui X.; Wang X. Adv. Synth. Catal. 2022, 364, 1580.
doi: 10.1002/adsc.v364.9 |
[1] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[2] | 张彦波, 孙萌. 铑催化碳酸亚乙烯酯与吲哚啉C(7)位C—H甲酰甲基化反应[J]. 有机化学, 2023, 43(8): 2905-2912. |
[3] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[4] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[5] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[6] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[7] | 贾海瑞, 邱早早. 过渡金属催化硼-氢键活化合成含硼-杂原子键邻碳硼烷衍生物的研究进展[J]. 有机化学, 2023, 43(3): 1045-1068. |
[8] | 吴孔川, 卢铠洪, 林建斌, 张慧君. 莱啉酰亚胺类化合物的邻位C—H键功能化研究进展[J]. 有机化学, 2023, 43(3): 1000-1011. |
[9] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[10] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[11] | 孙婧, 张萌萌, 锅小龙, 王琪, 王陆瑶. 无过渡金属条件下二芳基硒化合物的合成[J]. 有机化学, 2023, 43(12): 4251-4260. |
[12] | 王芳, 王磊. 基于N-亚硝基导向的芳烃C(sp2)—H键官能团化研究进展[J]. 有机化学, 2023, 43(12): 4157-4167. |
[13] | 秦思凝. 芳香卤代物C—S偶联反应的研究进展[J]. 有机化学, 2023, 43(11): 3761-3783. |
[14] | 刘敏, 亓丽萍, 赵东兵. 过渡金属催化硅杂环丁烷的C—Si键断裂反应研究进展[J]. 有机化学, 2023, 43(10): 3508-3525. |
[15] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||