有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3644-3651.DOI: 10.6023/cjoc202304029 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
研究论文
收稿日期:
2023-04-20
修回日期:
2023-06-02
发布日期:
2023-06-26
基金资助:
Li Xu, Lanlan Lü(), Xiangshan Wang()
Received:
2023-04-20
Revised:
2023-06-02
Published:
2023-06-26
Contact:
*E-mails: Supported by:
文章分享
β-酮砜是一类重要的含硫化合物和有机合成中间体, 被广泛应用于天然产物及许多重要有机化合物的构筑. 开发了一种溴化铜催化烯醇硅醚与芳基亚磺酸钠快速合成β-酮砜的方法, 具有操作简单、条件温和和反应时间短等优点.
许力, 吕兰兰, 王香善. 铜催化烯醇硅醚与芳基亚磺酸钠合成β-酮砜的研究[J]. 有机化学, 2023, 43(10): 3644-3651.
Li Xu, Lanlan Lü, Xiangshan Wang. Copper-Catalyzed Synthesis of β-Keto Sulfones from Enol Silyl Ether and Sodium Arylsulfinates[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3644-3651.
Entry | [M] | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | CuBr2 | DMSO | 80 | 56 |
2 | CuBr2 | DMF | 80 | 24 |
3 | CuBr2 | 1,4-Dioxane | 80 | 8 |
4 | CuBr2 | Toluene | 80 | 20 |
5 | CuBr2 | MeCN | 80 | 12 |
6 | CuBr2 | DCE | 80 | 27 |
7 | CuCl2 | DMSO | 80 | 30 |
8 | Cu(OTf)2 | DMSO | 80 | 29 |
9 | Cu(OAc)2 | DMSO | 80 | 51 |
10 | CuCl | DMSO | 80 | 42 |
11 | CuBr | DMSO | 80 | 45 |
12 | Cu powder | DMSO | 80 | 18 |
13 | Pd(OAc)2 | DMSO | 80 | 0 |
14 | Ag2CO3 | DMSO | 80 | 0 |
15 | CuBr2 | DMSO | 100 | 66 |
16 | CuBr2 | DMSO | 60 | 79 |
17 | CuBr2 | DMSO | 40 | 83 |
18 | CuBr2 | DMSO | rt | 89 |
19c | CuBr2 | DMSO | rt | 67 |
20d | CuBr2 | DMSO | rt | 13 |
Entry | [M] | Solvent | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | CuBr2 | DMSO | 80 | 56 |
2 | CuBr2 | DMF | 80 | 24 |
3 | CuBr2 | 1,4-Dioxane | 80 | 8 |
4 | CuBr2 | Toluene | 80 | 20 |
5 | CuBr2 | MeCN | 80 | 12 |
6 | CuBr2 | DCE | 80 | 27 |
7 | CuCl2 | DMSO | 80 | 30 |
8 | Cu(OTf)2 | DMSO | 80 | 29 |
9 | Cu(OAc)2 | DMSO | 80 | 51 |
10 | CuCl | DMSO | 80 | 42 |
11 | CuBr | DMSO | 80 | 45 |
12 | Cu powder | DMSO | 80 | 18 |
13 | Pd(OAc)2 | DMSO | 80 | 0 |
14 | Ag2CO3 | DMSO | 80 | 0 |
15 | CuBr2 | DMSO | 100 | 66 |
16 | CuBr2 | DMSO | 60 | 79 |
17 | CuBr2 | DMSO | 40 | 83 |
18 | CuBr2 | DMSO | rt | 89 |
19c | CuBr2 | DMSO | rt | 67 |
20d | CuBr2 | DMSO | rt | 13 |
[1] |
Markitanov M.; Timoshenko V.; Shermolovich Y. J. Sulfur Chem. 2014, 35, 188.
|
[2] |
Yang H.; Carter R.; Zakharov L. J. Am. Chem. Soc. 2008, 130, 9238.
doi: 10.1021/ja803613w pmid: 18582046 |
[3] |
Curti C.; Laget M.; Carle A.; Gellis A.; Vanelle P. Eur. J. Med. Chem. 2007, 42, 880.
pmid: 17320245 |
[4] |
Xiang J.; Ipek M.; Suri V.; Tam M.; Xing Y.; Huang N.; Zhang Y.; Tobin J.; Mansour T.; McKew J. Bioorg. Med. Chem. 2007, 15, 4396.
doi: 10.1016/j.bmc.2007.04.035 |
[5] |
Xiang J.; Ipek M.; Suri V.; Massefski W.; Pan N.; Ge Y.; Tam M.; Xing Y.; Tobin J.; Xu X.; Tam S. Bioorg. Med. Chem. Lett. 2005, 15, 2865.
doi: 10.1016/j.bmcl.2005.03.093 |
[6] |
Peng H.; Cheng Y.; Ni N.; Li M.; Choudhary G.; Chou H.; Lu C.; Tai P.; Wang B. ChemMedChem 2009, 4, 1457.
doi: 10.1002/cmdc.v4:9 |
[7] |
Montgomery J.; Brown M.; Reilly U.; Price L.; Abramite J.; Arcari J.; Barham R.; Che Y.; Chen J.; Chung S.; Collantes E.; Desbonnet C.; Doroski M.; Doty J.; Engtrakul J.; Harris T.; Huband M.; Knafels J.; Leach K.; Liu S.; Marfat A.; McAllister L.; McElroy E.; Menard C.; Mitton-Fry M.; Mullins L.; Noe M.; O’Donnell J.; Oliver R.; Penzien J.; Plummer M.; Shanmuga- sundaram V.; Thoma C.; Tomaras A.; Uccello D.; Vaz A.; Wishka D. J. Med. Chem. 2012, 55, 1662.
doi: 10.1021/jm2014875 pmid: 22257165 |
[8] |
Swenson R.; Sowin T.; Zhang H. J. Org. Chem. 2002, 67, 9182.
pmid: 12492318 |
[9] |
Mancheño O.; Tangen P.; Rohlmann R.; Fröhlich R.; Alemán J. Chem.-Eur. J. 2011, 17, 984.
doi: 10.1002/chem.201001914 pmid: 21226116 |
[10] |
Chang M.; Cheng Y.; Lu Y. Org. Lett. 2014, 16, 6252.
doi: 10.1021/ol5032238 |
[11] |
Chang M.; Chen Y.; Chan C. Tetrahedron 2015, 71, 782.
doi: 10.1016/j.tet.2014.12.070 |
[12] |
Saraiva M.; Costa G.; Seus N.; Schumacher R.; Perin G.; Paixão M.; Luque R.; Alves D. Org. Lett. 2015, 17, 6206.
doi: 10.1021/acs.orglett.5b03196 pmid: 26632867 |
[13] |
Chang M.; Chen H.; Tsai Y. Org. Lett. 2019, 21, 1832.
doi: 10.1021/acs.orglett.9b00422 |
[14] |
Thomsen M.; Handwerker B.; Katz S.; Belser R. J. Org. Chem. 1988, 53, 906.
doi: 10.1021/jo00239a051 |
[15] |
Katritzky A.; Abdel-Fattah A.; Wang M. J. Org. Chem. 2003, 68, 1443.
pmid: 12585885 |
[16] |
Suryakiran N.; Reddy T.; Ashalatha K.; Lakshman M.; Venkate- swarlu Y. Tetrahedron Lett. 2006, 47, 3853.
|
[17] |
Suryakiran N.; Prabhakar P.; Rajesh K.; Suresh V.; Venkate- swarlu Y. J. Mol. Catal. A: Chem. 2007, 270, 201.
doi: 10.1016/j.molcata.2007.01.049 |
[18] |
Trost B.; Curran D. Tetrahedron Lett. 1981, 22, 1287.
doi: 10.1016/S0040-4039(01)90298-9 |
[19] |
Cooper G.; Dolby L. Tetrahedron Lett. 1976, 17, 4675.
doi: 10.1016/S0040-4039(00)92992-7 |
[20] |
Mao R.; Yuan Z.; Li Y.; Wu J. Chem.-Eur. J. 2017, 23, 8176.
doi: 10.1002/chem.v23.34 |
[21] |
Liu T.; Zheng D.; Ding Y.; Fan X.; Wu J. Chem.-Asian J. 2017, 12, 465.
doi: 10.1002/asia.v12.4 |
[22] |
Gong X.; Ding Y.; Fan X.; Wu J. Adv. Synth. Catal. 2017, 359, 2999.
doi: 10.1002/adsc.v359.17 |
[23] |
He F.-S.; Yao Y.; Xie W.; Wu J. Chem. Commuun. 2020, 56, 9469.
|
[24] |
Ye S.; Li X.; Xie W.; Wu J. Eur. J. Org. Chem. 2020, 2020, 1274.
doi: 10.1002/ejoc.v2020.10 |
[25] |
Ghosh S.; Samanta S.; Ghosh A, K.; Neogi S.; Hajra A. Adv. Synth. Catal. 2020, 362, 4552
doi: 10.1002/adsc.v362.21 |
[26] |
Tang X.; Huang L.; Xu Y.; Yang J.; Wu W.; Jiang H. Angew. Chem., Int. Ed. 2014, 53, 4205.
doi: 10.1002/anie.v53.16 |
[27] |
Tang Y.; Zhang Y.; Wang K.; Li X.; Xu X.; Du X. Org. Biomol. Chem. 2015, 13, 7084.
doi: 10.1039/C5OB00742A |
[28] |
Tang Y.; Fan Y.; Gao H.; Li X.; Xu X. Tetrahedron Lett. 2015, 56, 5616.
doi: 10.1016/j.tetlet.2015.08.055 |
[29] |
Yadav V. K.; Srivastava V. P.; Yadav L. D. S. Synlett 2016, 27, 427.
doi: 10.1055/s-00000083 |
[30] |
Lu Q.; Chen J.; Liu C.; Huang Z.; Peng P.; Wang H.; Lei A. RSC Adv. 2015, 5, 24494.
doi: 10.1039/C4RA17106C |
[31] |
Wang H.; Wang G.; Lu Q.; Chiang C.-W.; Peng P.; Zhou J.; Lei A. Chem.-Eur. J. 2016, 22, 14489.
doi: 10.1002/chem.v22.41 |
[32] |
Xu J.; Shen C.; Qin X.; Wu J.; Zhang P.; Liu X. J. Org. Chem. 2021, 86, 3706.
doi: 10.1021/acs.joc.0c02249 |
[33] |
Singh A.; Chawla R.; Yadav L. Tetrahedron Lett. 2014, 55, 2845.
doi: 10.1016/j.tetlet.2014.03.078 |
[34] |
Xiong Y.; Weng J.; Lu G. Adv. Synth. Catal. 2018, 360, 1611.
doi: 10.1002/adsc.v360.8 |
[35] |
Ning Z.; Xu Z.; Liu R.; Du Z. Synth. Commun. 2021, 51, 3492.
doi: 10.1080/00397911.2021.1983603 |
[36] |
Xu J.; Shen C.; Qin X.; Wu J.; Zhang P.; Liu X. J. Org. Chem. 2021, 86, 3706.
doi: 10.1021/acs.joc.0c02249 |
[37] |
Rawat V.; Reddy P.; Sreedhar B. RSC Adv. 2014, 4, 5165.
doi: 10.1039/c3ra45547e |
[38] |
Xia J.; Huang X.; You S.; Cai M. Appl. Organomet. Chem. 2019, 33, e5001.
|
[39] |
Cai S.; Chen D.; Xu Y.; Weng W.; Li L.; Zhang R.; Huang M. Org. Biomol. Chem. 2016, 14, 4205.
doi: 10.1039/C6OB00617E |
[40] |
Kumar N.; Kumar A. ACS Sustainable Chem. Eng. 2019, 7, 9182.
doi: 10.1021/acssuschemeng.8b06566 |
[41] |
Lin B.; Kuang J.; Chen J.; Hua Z.; Khakyzadeh V.; Xia Y. Org. Chem. Front. 2019, 6, 2647.
doi: 10.1039/c9qo00440h |
[42] |
Tang Y.; Zhang Y.; Wang K.; Li X.; Xu X.; Du X. Org. Biomol. Chem. 2015, 13, 7084.
doi: 10.1039/C5OB00742A |
[43] |
Katrun P.; Songsichan T.; Soorukram D.; Pohmakotr M.; Reutrakul V.; Kuhakarn C. Synthesis 2017, 49 1109.
|
[44] |
Deng S.; Liang E.; Wu Y.; Tang X. Tetrahedron Lett. 2018, 59, 3955.
|
[45] |
Yavari I.; Shaabanzadeh S. Org. Lett. 2020, 22, 464.
doi: 10.1021/acs.orglett.9b04221 pmid: 31910023 |
[1] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[2] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[3] | 鲍志成, 李慕尧, 王剑波. 铜催化芳基重氮乙酸酯与双[(频哪醇)硼基]甲烷的偶联反应[J]. 有机化学, 2023, 43(5): 1808-1814. |
[4] | 李春生, 连晓琪, 陈莲芬. 铜催化亚砜叶立德与邻苯二胺[4+2]环加成反应[J]. 有机化学, 2023, 43(4): 1492-1498. |
[5] | 刘洋, 黄翔, 王敏, 廖建. 铜催化环酮亚胺与β,γ-不饱和N-酰基吡唑不对称Mannich-Type反应[J]. 有机化学, 2023, 43(4): 1499-1509. |
[6] | 刘春阳, 李燕, 张前. 铜催化环状烯烃烯丙位C(sp3)—H磺酰化反应研究[J]. 有机化学, 2023, 43(3): 1091-1101. |
[7] | 韩彪, 李维双, 陈舒晗, 张泽浪, 赵雪, 张瑶瑶, 朱磊. 铜催化不饱和化合物硅加成反应的研究进展[J]. 有机化学, 2023, 43(2): 555-572. |
[8] | 陈志远, 杨梦维, 徐建林, 徐允河. 铜催化双炔膦氧化物硅质子化反应合成β-硅基取代的乙烯基膦氧化物[J]. 有机化学, 2023, 43(10): 3598-3607. |
[9] | 陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480. |
[10] | 李晖, 殷亮. 铜催化的直接型插烯反应研究进展[J]. 有机化学, 2022, 42(6): 1573-1585. |
[11] | 孙天义, 张依凡, 孟远倢, 王怡, 朱琦峰, 姜玉新, 刘石惠. 可见光-铜共催化的糖类区域选择性氧烷基化反应[J]. 有机化学, 2022, 42(5): 1414-1422. |
[12] | 孙亚敏, 李锡勇, 袁金伟, 余加琳, 刘帅楠. 温和条件下以芳基胺为原料CuI催化下区域选择性合成3-芳基香豆素[J]. 有机化学, 2022, 42(2): 631-640. |
[13] | 郭檬檬, 于子伦, 陈玉兰, 葛丹华, 马猛涛, 沈志良, 褚雪强. 二氟烯醇硅醚作为含氟砌块在构建有机氟化物中的研究进展[J]. 有机化学, 2022, 42(11): 3562-3587. |
[14] | 张瑶瑶, 周丽洁, 韩彪, 李维双, 李博解, 朱磊. 壳聚糖负载铜催化剂在有机反应中的应用研究进展[J]. 有机化学, 2022, 42(1): 33-53. |
[15] | 孙名扬, 徐坤, 郭兵兵, 曾程初. 空气氧化的铜催化苯甲酸衍生物邻位C(sp2)—H键的硒化反应[J]. 有机化学, 2021, 41(6): 2302-2309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||