有机化学 ›› 2024, Vol. 44 ›› Issue (4): 1264-1275.DOI: 10.6023/cjoc202310002 上一篇 下一篇
研究论文
高燊原, 诸昊穹, 金巧玲, 金露儿, 王晓钟*(), 戴立言*()
收稿日期:
2023-10-03
修回日期:
2023-11-20
发布日期:
2023-12-08
基金资助:
Shenyuan Gao, Haoqiong Zhu, Qiaoling Jin, Lu'er Jin, Xiaozhong Wang(), Liyan Dai()
Received:
2023-10-03
Revised:
2023-11-20
Published:
2023-12-08
Contact:
E-mail: Supported by:
文章分享
提出了一种新的非活化烯烃、喹喔啉酮和AgSCF3的三组分级联自由基反应. 在氧化剂K2S2O8的作用下, 得到了40个含SCF3的喹喔啉酮类衍生物, 其中产率最高至78%. 该方法是一种在温和条件下制备含三氟甲硫基喹唑啉酮类化合物, 具有产率高、底物范围广、原子经济性高和环保高效等优势.
高燊原, 诸昊穹, 金巧玲, 金露儿, 王晓钟, 戴立言. 三氟甲硫基自由基引发涉及烯烃、AgSCF3和喹喔啉酮的三组分反应[J]. 有机化学, 2024, 44(4): 1264-1275.
Shenyuan Gao, Haoqiong Zhu, Qiaoling Jin, Lu'er Jin, Xiaozhong Wang, Liyan Dai. Three-Component Reaction Involving Alkenes, AgSCF3 and Quinoxalinones Initiated by Trifluoromethylthio Radical[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1264-1275.
Enter | Oxidant | Temp./°C | Solvent | Yieldb/% |
---|---|---|---|---|
1 | K2S2O8 | 60 | DMSO | 30 |
2 | K2S2O8 | 60 | DMSO/H2O (V∶V=10∶1) | 63 |
3 | K2S2O8 | 60 | DMSO/H2O (V∶V=8∶1) | 68 |
4 | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 71 |
5 | K2S2O8 | 60 | DMSO/H2O (V∶V=4∶1) | 45 |
6 | K2S2O8 | 60 | DMSO/H2O (V∶V=3∶1) | 30 |
7 | K2S2O8 | 60 | DMSO/H2O (V∶V=2∶1) | 21 |
8 | K2S2O8 | 60 | DMSO/H2O (V∶V=1∶1) | Trace |
9 | K2S2O8 | 60 | H2O | Trace |
10 | K2S2O8 | 60 | CH2Cl2/H2O (V∶V=6∶1) | Trace |
11 | K2S2O8 | 60 | 1,4-Dioxane/H2O (V∶V=6∶1) | Trace |
12 | K2S2O8 | 60 | CH3CN/H2O (V∶V=6∶1) | 52 |
13 | K2S2O8 | 60 | DMF/H2O (V∶V=6∶1) | Trace |
14 | K2S2O8 | 60 | THF/H2O (V∶V=6∶1) | Trace |
15 | Na2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 33 |
16 | (NH4)2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 48 |
17 | TBPB | 60 | DMSO/H2O (V∶V=6∶1) | Trace |
18 | TBHP | 60 | DMSO/H2O (V∶V=6∶1) | 41 |
19 | DTBP | 60 | DMSO/H2O (V∶V=6∶1) | Trace |
20c | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 56 |
21d | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 73 |
22 | K2S2O8 | 50 | DMSO/H2O (V∶V=6∶1) | 75 |
23 | K2S2O8 | 40 | DMSO/H2O (V∶V=6∶1) | 66 |
24 | K2S2O8 | 70 | DMSO/H2O (V∶V=6∶1) | 63 |
25e | K2S2O8 | 50 | DMSO/H2O (V∶V=6∶1) | 42 |
26 | 50 | DMSO/H2O (V∶V=6∶1) | Trace | |
20c | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 56 |
Enter | Oxidant | Temp./°C | Solvent | Yieldb/% |
---|---|---|---|---|
1 | K2S2O8 | 60 | DMSO | 30 |
2 | K2S2O8 | 60 | DMSO/H2O (V∶V=10∶1) | 63 |
3 | K2S2O8 | 60 | DMSO/H2O (V∶V=8∶1) | 68 |
4 | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 71 |
5 | K2S2O8 | 60 | DMSO/H2O (V∶V=4∶1) | 45 |
6 | K2S2O8 | 60 | DMSO/H2O (V∶V=3∶1) | 30 |
7 | K2S2O8 | 60 | DMSO/H2O (V∶V=2∶1) | 21 |
8 | K2S2O8 | 60 | DMSO/H2O (V∶V=1∶1) | Trace |
9 | K2S2O8 | 60 | H2O | Trace |
10 | K2S2O8 | 60 | CH2Cl2/H2O (V∶V=6∶1) | Trace |
11 | K2S2O8 | 60 | 1,4-Dioxane/H2O (V∶V=6∶1) | Trace |
12 | K2S2O8 | 60 | CH3CN/H2O (V∶V=6∶1) | 52 |
13 | K2S2O8 | 60 | DMF/H2O (V∶V=6∶1) | Trace |
14 | K2S2O8 | 60 | THF/H2O (V∶V=6∶1) | Trace |
15 | Na2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 33 |
16 | (NH4)2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 48 |
17 | TBPB | 60 | DMSO/H2O (V∶V=6∶1) | Trace |
18 | TBHP | 60 | DMSO/H2O (V∶V=6∶1) | 41 |
19 | DTBP | 60 | DMSO/H2O (V∶V=6∶1) | Trace |
20c | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 56 |
21d | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 73 |
22 | K2S2O8 | 50 | DMSO/H2O (V∶V=6∶1) | 75 |
23 | K2S2O8 | 40 | DMSO/H2O (V∶V=6∶1) | 66 |
24 | K2S2O8 | 70 | DMSO/H2O (V∶V=6∶1) | 63 |
25e | K2S2O8 | 50 | DMSO/H2O (V∶V=6∶1) | 42 |
26 | 50 | DMSO/H2O (V∶V=6∶1) | Trace | |
20c | K2S2O8 | 60 | DMSO/H2O (V∶V=6∶1) | 56 |
[1] |
(a) Wu H. Z.; Luo T.; Jiang J. W.; Wan J. P. Chin. J. Org. Chem. 2022, 42(11), 3721. (in Chinese)
doi: 10.6023/cjoc202206029 |
(吴豪志, 罗田, 姜建文, 万结平, 有机化学, 2022, 42(11), 3721.)
doi: 10.6023/cjoc202206029 |
|
(b) Chen D. M.; Jiang J. W.; Wan J. P. Chin. J. Chem. 2022, 40(21), 2582.
doi: 10.1002/cjoc.v40.21 |
|
(c) Shi L. L.; Li T. T.; Mei G. J. Green Synth. Catal. 2022, 3(3), 227.
|
|
(d) Guo H. J.; Liu Y. Y.; Wen C. P.; Wan J. P. Green Chem. 2022, 24(13), 5058.
doi: 10.1039/D2GC01644C |
|
(e) Jia X. M.; Ma X.; Feng W.; Zhang J. Q.; Zhao Y. L.; Guo B.; Tang L.; Yang Y. Y. J. Org. Chem. 2022, 87(24), 16492.
doi: 10.1021/acs.joc.2c02207 |
|
[2] |
(a) Moschner J.; Stulberg V.; Fernandes R.; Huhmann S.; Leppkes J.; Koksch B. Chem. Rev. 2019, 119(18), 10718.
doi: 10.1021/acs.chemrev.9b00024 pmid: 24484423 |
(b) Zhou Y.; Wang J.; Gu Z. N.; Wang S. N.; Zhu W.; Acena J. L.; Soloshonok V. A.; Izawa K.; Liu H. Chem. Rev. 2016, 116(2), 422.
doi: 10.1021/acs.chemrev.5b00392 pmid: 24484423 |
|
(c) Landelle G.; Panossian A.; Leroux F. R. Curr. Top Med. Chem. 2014, 14(7), 941.
pmid: 24484423 |
|
[3] |
(a) Qiu Y. F.; Zhu X. Y.; Li Y. X.; He Y. T.; Yang F.; Wang J.; Hua H. L.; Zheng L.; Wang L. C.; Liu X. Y.; Liang Y. M. Org. Lett. 2015, 17(15), 3694.
doi: 10.1021/acs.orglett.5b01657 |
(b) Li Y.; Li L. J.; Yan Q. Q.; Ren Y. M.; Li X.; Liu Z. Q.; Li Z. J. Synlett 2022, 33(19), 1938.
doi: 10.1055/a-1937-9244 |
|
(c) Wang L.; Xie L.; Fang Z. G.; Zhang Q.; Li D. Org. Chem. Front. 2022, 9(11), 3061.
doi: 10.1039/D2QO00207H |
|
(d) Liu K.; Jin Q.; Chen S.; Liu P. N. RSC Adv. 2017, 7(3), 1546.
doi: 10.1039/C6RA25378D |
|
(e) Jin D. P.; Gao P.; Chen D. Q.; Chen S.; Wang J.; Liu X. Y.; Liang Y. M. Org. Lett. 2016, 18(14), 3486.
doi: 10.1021/acs.orglett.6b01702 |
|
[4] |
(a) Zeng Y. F.; Tan D. H.; Chen Y. Y.; Lv W. X.; Liu X. G.; Li Q. J.; Wang H. G. Org. Chem. Front. 2015, 2(11), 1511.
doi: 10.1039/C5QO00271K |
(b) Zhang Z.; Fang X. S.; Aili A.; Wang S. L.; Tang J. H.; Lin W. J.; Xie L.; Chen J. C.; Sun K. Org. Lett. 2023.
|
|
(c) Pan S.; Huang Y. G.; Xu X. H.; Qing F. L. Org. Lett. 2017, 19(17), 4624.
doi: 10.1021/acs.orglett.7b02249 |
|
(d) Shen L. Y.; Sun Y.; Wang Y. Q.; Li B.; Yang W. C.; Dai P. Tetrahedron 2022, 106, 132649.
|
|
(e) Yang W. C.; Zhang M. M.; Sun Y.; Chen C. Y.; Wang L. Org. Lett. 2021, 23(17), 6691.
doi: 10.1021/acs.orglett.1c02260 |
|
(f) Lu Y. H.; Zhang Z. T.; Wu H. Y.; Zhou M. H.; Song H. Y.; Ji H. T.; Jiang J.; Chen J. Y.; He W. M. Chin. Chem. Lett. 2023, 34(7), 108036.
doi: 10.1016/j.cclet.2022.108036 |
|
(g) Wang Z. W.; Liu Q. S.; Liu R. S.; Ji Z. Y.; Li Y.; Zhao X. H.; Wei W. Chin. Chem. Lett. 2022, 33(3), 1479.
doi: 10.1016/j.cclet.2021.08.036 |
|
[5] |
Xiao Z. W.; Liu Y. A.; Zheng L. P.; Liu C.; Guo Y.; Chen Q. Y. J Org. Chem. 2018, 83(10), 5836.
doi: 10.1021/acs.joc.8b00650 |
[6] |
Jia Y. M.; Qin H. M.; Wang N.; Jiang Z. X.; Yang Z. G. J. Org. Chem. 2018, 83(5), 2808.
doi: 10.1021/acs.joc.7b03261 |
[7] |
Saravanan P.; Anbarasan P. Chem. Commun. 2019, 55(32), 4639.
doi: 10.1039/C9CC00815B |
[8] |
He J.; Chen C. Y.; Fu G. C.; Peters J. C. ACS Catal. 2018, 8(12), 11741.
doi: 10.1021/acscatal.8b04094 |
[9] |
Li X. J.; Zhang Q.; Zhang W. G.; Ma J. Z.; Wang Y.; Pan Y. Beilstein J. Org. Chem. 2021, 17, 551.
doi: 10.3762/bjoc.17.49 |
[10] |
Liu X. H.; Yu W.; Min L. J.; Wedge D. E.; Tan C. X.; Weng J. Q.; Wu H. K. J. Agric. Food Chem. 2020, 68, 7324.
doi: 10.1021/acs.jafc.0c01042 |
[11] |
Abad N.; Sallam H. H.; Al-Ostoot F. H.; Khamees H. A.; Al- horaibi S. A.; Sridhar M. A.; Khanum S. A.; Madegowda M.; El Hafi M.; Mague J. T.; Essassi E.; Ramli Y. J. Mol. Struct. 2021, 1232, 130004.
doi: 10.1016/j.molstruc.2021.130004 |
[12] |
Wang S. L.; Ding J.; Jiang B.; Gao Y.; Tu S. J. ACS Comb. Sci. 2011, 13(5), 572.
doi: 10.1021/co2001247 |
[13] |
(a) Qin X. Y.; Hao X.; Han H.; Zhu S. J.; Yang Y. C.; Wu B. B.; Hussain S.; Parveen S.; Jing C. J.; Ma B.; Zhu C. J. J. Med. Chem. 2015, 58(3), 1254.
doi: 10.1021/jm501484b |
(b) Khattab S. N.; Moneim S. A. H. A.; Bekhit A. A.; El Massry A. M.; Hassan S. Y.; El-Faham A.; Ahmed H. E. A.; Amer A. Eur. J. Med. Chem. 2015, 93, 308.
doi: 10.1016/j.ejmech.2015.02.020 |
|
(c) Wu B. B.; Yang Y. C.; Qin X. Y.; Zhang S. Z.; Jing C. J.; Zhu C. J.; Ma B. ChemMedChem 2013, 8(12), 1913.
doi: 10.1002/cmdc.v8.12 |
|
[14] |
(a) Shen J. B.; He L.; Liang C. F.; Ouyang Y. N.; Yue X. G.; Wu H. F.; Xu J.; Liu X. G.; Zhu Q.; Zhang P. F. Mol. Catal. 2022, 524.
|
(b) Shen J. B.; Xu J.; Zhu Q.; Zhang P. F. Org. Biomol. Chem. 2021, 19(14), 3119.
doi: 10.1039/D1OB00219H |
|
[15] |
(a) Dutta H. S.; Ahmad A.; Khan A. A.; Kumar M.; Raziullah; Koley, D. Adv. Synth. Catal. 2019, 361(24), 5534.
doi: 10.1002/adsc.v361.24 |
(b) Wang Z. W.; Liu Q. S.; Liu R. S.; Ji Z. Y.; Li Y.; Zhao X. H.; Wei W. Chin. Chem. Lett. 2022, 33(3), 1479.
doi: 10.1016/j.cclet.2021.08.036 |
|
(c) Lv Y. F.; Luo J. Y.; Lin M. Z.; Yue H. L.; Dai B.; He L. Org Chem. Front. 2021, 8(19), 5403.
doi: 10.1039/D1QO00816A |
|
[16] |
Bhuyan M.; Sharma S.; Baishya G. Org. Biomol. Chem. 2022, 20(7), 1462.
doi: 10.1039/D1OB02143E |
[17] |
(a) Zhou N. N.; Liu R. Y.; Zhang C. M.; Wang K.; Feng J. X.; Zhao X.; Lu K. Org. Lett. 2022, 24(19), 3576.
doi: 10.1021/acs.orglett.2c01358 pmid: 32392413 |
(b) Yuan Y. R.; Li L.; Bu X. B.; Wang X.; Sun R.; Zhou M. D.; Wang H. Asian J. Org. Chem. 2022, 11(5), e202200139.
doi: 10.1002/ajoc.v11.5 pmid: 32392413 |
|
(c) Yang X.; Meng W. D.; Xu X. H.; Huang Y. G. Y. Org. Chem. Front. 2021, 8(23), 6597.
doi: 10.1039/D1QO01170G pmid: 32392413 |
|
(d) Meng N.; Lv Y. F.; Liu Q. S.; Liu R. S.; Zhao X. H.; Wei W. Chin. Chem. Lett. 2021, 32(1), 258.
doi: 10.1016/j.cclet.2020.11.034 pmid: 32392413 |
|
(e) Meng N.; Wang L. L.; Liu Q. S.; Li Q. Y.; Lv Y. F.; Yue H. L.; Wang X. J.; Wei W. J. Org. Chem. 2020, 85(11), 6888.
doi: 10.1021/acs.joc.9b03505 pmid: 32392413 |
|
(f) Zheng D. Q.; Studer A. Org. Lett. 2019, 21(1), 325.
doi: 10.1021/acs.orglett.8b03849 pmid: 32392413 |
|
[18] |
Wu Y. C.; Zhang J.; Yu J. T.; Pan C. D. Adv. Synth. Catal. 2023, 365(5), 687.
doi: 10.1002/adsc.v365.5 |
[19] |
Singh S.; Dagar N.; Pal G.; Roy S. R. Green Chem. 2022, 24(21), 8460.
doi: 10.1039/D2GC03017A |
[1] | 沈都益, 李玲慧, 靳鸽, 梁雨佳, 张欣慧, 公培伟, 张范军, 晁绵冉. 基于单电子转移的黄素仿生光催化氧化研究进展[J]. 有机化学, 2024, 44(4): 1069-1093. |
[2] | 鞠国栋, 周冠宇, 赵应声. 三异丙基硅烷(TIPS)保护苯酚的无过渡金属催化区域选择性硫氰化反应[J]. 有机化学, 2024, 44(4): 1327-1336. |
[3] | 黄健, 张文珍. 碳氮键参与的电化学阴极还原反应研究进展[J]. 有机化学, 2024, 44(3): 825-839. |
[4] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[5] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[6] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[7] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[8] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[9] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[10] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[11] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[12] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[13] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[14] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[15] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||