有机化学 ›› 2024, Vol. 44 ›› Issue (3): 940-950.DOI: 10.6023/cjoc202401002 上一篇 下一篇
研究论文
李章健a,b, 王振华b, 郭剑峰b, 方萍b, 马聪b,*(), 刘润华b,c,*(), 梅天胜b,c,*()
收稿日期:
2024-01-04
修回日期:
2024-02-28
发布日期:
2024-04-02
基金资助:
Zhang-Jian Lia,b, Zhen-Hua Wangb, Jian-Feng Guob, Ping Fangb, Cong Mab(), Run-Hua Liub,c(), Tian-Sheng Meib,c()
Received:
2024-01-04
Revised:
2024-02-28
Published:
2024-04-02
Contact:
*E-mail: mei7900@sioc.ac.cn; macong2016@sioc.ac.cn; liurh@mail.sioc.ac.cn
Supported by:
文章分享
研究了电化学氧化甘氨酸衍生物与烯烃之间的氧化脱氢Povarov/串联反应, 其中氮氧自由基2,2,6,6-四甲基哌啶氧化物(TEMPO)作为媒介降低了电化学反应的电位, 避免了某些富电子的芳胺在较高电位下的过氧化. 它为甘氨酸衍生物的氮-α位官能团化提供了潜在的途径, 并通过Shono氧化与Povarov反应的结合, 开发了一种在温和条件下高产率合成喹啉衍生物的有效方法.
李章健, 王振华, 郭剑峰, 方萍, 马聪, 刘润华, 梅天胜. 电化学促进2,2,6,6-四甲基哌啶氧化物(TEMPO)介导的甘氨酸衍生物氧化脱氢Povarov/串联反应[J]. 有机化学, 2024, 44(3): 940-950.
Zhang-Jian Li, Zhen-Hua Wang, Jian-Feng Guo, Ping Fang, Cong Ma, Run-Hua Liu, Tian-Sheng Mei. Electrochemistry-Enabled 2,2,6,6-Tetramethylpiperidoxyl (TEMPO)-Mediated Oxidative Dehydrogenation Povarov/Tandem Reactions of Glycine Derivatives[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 940-950.
Entry | Variations from standard conditions | Yieldb/% |
---|---|---|
1 | None | 97 (95c)a |
2 | No Fe(OTf)3 | 0 |
3 | No TEMPO | 43 |
4 | No current | 22 |
5 | Under N2 | Trace |
6 | Ce(OTf)3 instead of Fe(OTf)3 | 41 |
7 | Fe(OTf)2 instead of Fe(OTf)3 | 17 |
8 | n-Bu4NCl instead of n-Bu4NPF6 | trace |
9 | Et4NBF4 instead of n-Bu4NPF6 | 36 |
10 | Carbon felt instead of RVC | 43 |
11 | DIPEA | trace |
12 | 3.0 mA | 24 |
13 | 4-OH-TEMPO instead of TEMPO | 55 |
15 | ABNO instead of TEMPO | 68 |
Entry | Variations from standard conditions | Yieldb/% |
---|---|---|
1 | None | 97 (95c)a |
2 | No Fe(OTf)3 | 0 |
3 | No TEMPO | 43 |
4 | No current | 22 |
5 | Under N2 | Trace |
6 | Ce(OTf)3 instead of Fe(OTf)3 | 41 |
7 | Fe(OTf)2 instead of Fe(OTf)3 | 17 |
8 | n-Bu4NCl instead of n-Bu4NPF6 | trace |
9 | Et4NBF4 instead of n-Bu4NPF6 | 36 |
10 | Carbon felt instead of RVC | 43 |
11 | DIPEA | trace |
12 | 3.0 mA | 24 |
13 | 4-OH-TEMPO instead of TEMPO | 55 |
15 | ABNO instead of TEMPO | 68 |
[1] |
(a) Ma C.; Fang P.; Mei T.-S. ACS Catal. 2018, 8, 7179.
doi: 10.1021/acscatal.8b01697 |
(b) Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309.
doi: 10.1021/acs.accounts.9b00512 |
|
(c) Xiong P.; Xu H.-C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 |
|
(d) Roeckl J. L.; Pollok D.; Franke R.; Waldvogel R. S. Acc. Chem. Res. 2020, 53, 45.
doi: 10.1021/acs.accounts.9b00511 |
|
(e) Zhu C.; Ang N. W. J.; Meyer T. H.; Qiu Y.; Ackermann L. ACS Cent. Sci. 2021, 7, 415.
doi: 10.1021/acscentsci.0c01532 |
|
(f) Malapit C.; Minteer S. D. Chem. Rev. 2022, 122, 3180.
doi: 10.1021/acs.chemrev.1c00614 |
|
(g) Zhang X.; Zhan J.; Yu Z.; Deng J.; Li M.; Shao Y. Chin. J. Chem. 2023, 41, 214.
doi: 10.1002/cjoc.v41.2 |
|
(h) Zeng L.; Qin J.-H.; Lv G.-F.; Hu M.; Sun Q.; Ouyang X.-H.; He D.-L.; Li J.-H. Chin. J. Chem. 2023, 41, 1921.
doi: 10.1002/cjoc.v41.16 |
|
[2] |
(a) Kingston C.; Palkowitz M. D.; Kawamata Y.; Baran P. S. Acc. Chem. Res. 2020, 53, 72.
doi: 10.1021/acs.accounts.9b00539 |
(b) Wang F.; Stahl S. Acc. Chem. Res. 2020, 53, 561.
doi: 10.1021/acs.accounts.9b00544 |
|
(c) Pollok D.; Waldvogel S. R. Chem. Sci. 2020, 11, 12386.
doi: 10.1039/D0SC01848A |
|
(d) Siu J. C.; Fu N. K.; Lin S. Acc. Chem. Res. 2020, 53, 547.
doi: 10.1021/acs.accounts.9b00529 |
|
(e) Zhu C.; Ang N. W. J.; Meyer T.-H.; Qiu Y.; Ackermann L. ACS Cent. Sci. 2021, 7, 415.
doi: 10.1021/acscentsci.0c01532 |
|
(f) Wang Z.-H.; Ma C.; Fang P.; Xu H.-C.; Mei T.-S. Acta Chim. Sinica 2022, 80, 1115. (in Chinese)
doi: 10.6023/A22060260 |
|
( 王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.)
|
|
(g) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
doi: 10.31635/ccschem.021.202101451 |
|
[3] |
(a) Shono T.; Hamaguchi H.; Matsumura Y. J. Am. Chem. Soc. 1975, 97, 4264.
doi: 10.1021/ja00848a020 pmid: 35015533 |
(b) Shono T.; Matsumura Y.; Uchida K.; Tsubata K.; Makino A. J. Org. Chem. 1984, 49, 300.
doi: 10.1021/jo00176a016 pmid: 35015533 |
|
(c) Onomura O. Heterocycles 2012, 85, 2111.
doi: 10.3987/REV-12-744 pmid: 35015533 |
|
(d) Jones A. M.; Banks C. E. Beilstein J. Org. Chem. 2014, 10, 3056.
doi: 10.3762/bjoc.10.323 pmid: 35015533 |
|
(e) Fu N.; Li L.; Yang Q.; Luo S. Org. Lett. 2017, 19, 2122.
doi: 10.1021/acs.orglett.7b00746 pmid: 35015533 |
|
(f) Kärkäs M. D. Chem. Soc. Rev. 2018, 47, 5786.
doi: 10.1039/C7CS00619E pmid: 35015533 |
|
(g) Wang F.; Rafiee M.; Stahl S. S. Angew. Chem., Int. Ed. 2018, 57, 6686.
doi: 10.1002/anie.v57.22 pmid: 35015533 |
|
(h) Lennox A. J. J.; Goes S. L.; Webster M. P.; Koolman H. F.; Djuric S. W.; Stahl S. S. J. Am. Chem. Soc. 2018, 140, 11227.
doi: 10.1021/jacs.8b08145 pmid: 35015533 |
|
(i) Feng T.; Wang S.; Qiu Y. Synlett 2022, 33, 1582.
doi: 10.1055/a-1828-1217 pmid: 35015533 |
|
(j) Novaes L. F. T.; Ho J. S. K.; Mao K.; Liu K.; Tanwar M.; Neurock M.; Villemure E.; Terrett J. A.; Lin S. J. Am. Chem. Soc. 2022, 144, 1187.
doi: 10.1021/jacs.1c09412 pmid: 35015533 |
|
[4] |
(a) Povarov L, S.; Mikhailov B, M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 953.
|
(b) Povarov L, S.; Mikhailov B, M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 2039.
|
|
(c) Povarov L. S. Chem. Rev. 1967, 36, 656.
|
|
(d) Makioka Y.; Shindo T.; Taniguchi Y.; Takaki K.; Fujiwara F. Synthesis 1995, 1995, 801.
doi: 10.1055/s-1995-4002 |
|
(e) Mariafrancesca F.; Lorenzo C.; Luca B. Synthesis 2014, 46, 135.
doi: 10.1055/s-00000084 |
|
[5] |
(a) Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
doi: 10.1039/c3cs60464k pmid: 24500279 |
(b) Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 pmid: 24500279 |
|
(c) Masdeu C.; Palacios F.; Alonso C. Top. Curr. Chem. 2023, 381, 20.
pmid: 24500279 |
|
[6] |
(a) Povarov L. S.; Mikhailov B. M.; Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 953.
pmid: 21718039 |
(b) Murata S.; Miura M.; Nomura M. J. Org. Chem. 1989, 54, 4700.
doi: 10.1021/jo00280a049 pmid: 21718039 |
|
(c) Murahashi S, I.; Naota T.; Miyaguchi N.; Nakato T. Tetrahedron Lett. 1992, 33, 6991.
doi: 10.1016/S0040-4039(00)60914-0 pmid: 21718039 |
|
(d) Araneo S.; Fontana F.; Minisci F.; Recupero F.; Serri A. Tetrahedron Lett. 1995, 36, 4307.
doi: 10.1016/0040-4039(95)00746-Y pmid: 21718039 |
|
(e) Huang L. H.; Zhang X. B.; Zhang Y. H. Org. Lett. 2009, 11, 3730.
doi: 10.1021/ol901347t pmid: 21718039 |
|
(f) Nishino M.; Hirano K.; Satoh T.; Miura M. J. Org. Chem. 2011, 76, 6447.
doi: 10.1021/jo2011329 pmid: 21718039 |
|
(g) Zhu S, Q.; Das A.; Bui L.; Zhou H. J.; Curran D. P.; Rueping M. J. Am. Chem. Soc. 2013, 135, 1823.
doi: 10.1021/ja309580a pmid: 21718039 |
|
(h) Zhao L.; Baslø O.; Li C.-J. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4106.
doi: 10.1073/pnas.0809052106 pmid: 21718039 |
|
[7] |
(a) Richter H.; García Mancheño O. Org. Lett. 2011, 13, 6066.
doi: 10.1021/ol202552y pmid: 23705827 |
(b) Rohlmann R.; Stopka T.; Richter H.; García Mancheño O. J. Org. Chem. 2013, 78, 6050.
doi: 10.1021/jo4007199 pmid: 23705827 |
|
[8] |
(a) Jia X.; Peng F.; Qing C.; Huo C.; Wang X. Org. Lett. 2012, 14, 4030.
doi: 10.1021/ol301909g |
(b) Jia X.; Wang Y.; Peng F.; Huo C.; Yu L.; Liu J.; Wang X. J. Org. Chem. 2013, 78, 9450.
doi: 10.1021/jo401018v |
|
(c) Liu P.; Wang Z.; Lin J.; Hu X. Eur. J. Org. Chem. 2012, 2012, 1583.
doi: 10.1002/ejoc.v2012.8 |
|
(d) Huo C.; Yuan Y.; Wu M.; Jia X.; Wang X.; Chen F.; Tang J. Angew. Chem., Int. Ed. 2014, 126, 13762.
doi: 10.1002/ange.v126.49 |
|
(e) Huo C.; Xie H, S.; Wu M, X.; Jia X, D.; Wang X.; Tang J. Chem.-Eur. J. 2015, 21, 5723.
doi: 10.1002/chem.v21.15 |
|
[9] |
(a) Xie Z. Y.; Jia J.; Liu X. G.; Liu L. Adv. Synth. Catal. 2016, 358, 919.
doi: 10.1002/adsc.v358.6 |
(b) Ni M.; Zhang Y.; Gong T.; Feng B. Adv. Synth. Catal. 2017, 359, 824.
doi: 10.1002/adsc.v359.5 |
|
(c) Yang X.; Li Y.; Li Y.; Zhang Y. J. Org. Chem. 2016, 81, 12433.
doi: 10.1021/acs.joc.6b02683 |
|
(d) Wang S.; Ye Y.; Hu Y.; Meng M.; Liu Z.; Liu J.; Chen K.; Zhang Z.; Zhang Y. Chem. Commun. 2023, 59, 2628.
doi: 10.1039/D2CC07071E |
|
[10] |
(a) Wang Z.-H.; Gao P.-S.; Wang X.; Gao J.-Q.; Xu X.-T.; He Z.; Ma C.; Mei T.-S. J. Am. Chem. Soc. 2021, 143, 15599.
doi: 10.1021/jacs.1c08671 |
(b) Gao J.-Q.; Weng X.-J.; Ma C.; Xu X.-T.; Fang P.; Mei T.-S. Chin. J. Org. Chem. 2021, 41, 3223. (in Chinese)
|
|
( 高君青, 翁信军, 马聪, 徐学涛, 方萍, 梅天胜, 有机化学, 2021, 41, 3223.)
|
|
(c) Gao P.-S.; Weng X.-J.; Wang Z.-H.; Zheng C.; Sun B.; Chen Z.-H.; You S.-L.; Mei T.-S. Angew. Chem., Int. Ed. 2020, 59, 15254.
doi: 10.1002/anie.v59.35 |
|
(d) Liu H.-L.; He Z.; Wang N.-N.; Xu H.; Fang P.; Mei T.-S. Org. Lett. 2023, 25, 608.
doi: 10.1021/acs.orglett.2c04136 |
|
(e) He Z.; Liu H.-L.; Wang Z.-H.; Jiao K.-J.; Li Z.-M.; Li Z.-J.; Fang P.; Mei T.-S. J. Org. Chem. 2023, 88, 6203.
doi: 10.1021/acs.joc.3c00223 |
|
[11] |
(a) James M.; Ramesh V.; Claudia B.; Robert Y.; Lorraine J.-B. Org. Biomol. Chem. 2014, 12, 255.
doi: 10.1039/C3OB41539B pmid: 19572501 |
(b) Wang J.; Li L.; Guo Y.; Li S.; Wang S.; Li Y.; Zhang Y. Org. Biomol. Chem. 2020, 18, 8179.
doi: 10.1039/D0OB01837F pmid: 19572501 |
|
(c) Jaideep B.; Abubakar W.;Sadhana, S.; Imam, R, S.; Manoj, K.; Ram, A, V.; Ajay, K.; Sandip B. Org. Biomol. Chem. 2014, 12, 6267.
doi: 10.1039/c4ob00488d pmid: 19572501 |
|
(d) Heinrich R.; Mancheno G. Org. Lett. 2011, 13, 6066.
doi: 10.1021/ol202552y pmid: 19572501 |
|
(e) Yang X.; Li L.; Li Y.; Zhang Y. J. Org. Chem. 2016, 81, 12433.
doi: 10.1021/acs.joc.6b02683 pmid: 19572501 |
|
(f) Huang H.; Jiang H.; Chen K.; Liu H. J. Org. Chem. 2009, 74, 5476.
doi: 10.1021/jo901101v pmid: 19572501 |
[1] | 周兰, 何红, 杨德巧, 侯中伟, 王磊. N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024, 44(3): 981-988. |
[2] | 吴际伟, 何俊, 王晶晶, 李丽霞, 徐采玉, 周洁, 李子荣, 许华建. 电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应[J]. 有机化学, 2024, 44(3): 972-980. |
[3] | 朱子乐, 李鹏飞, 仇友爱. 电化学芳烃C(sp2)—H胺化反应的研究进展[J]. 有机化学, 2024, 44(3): 871-891. |
[4] | 陈红斌, 杨思佳, 叶智鹏, 陈凯, 向皞月, 阳华. 以路易斯碱硼烷为氢供体电催化还原喹啉及酮[J]. 有机化学, 2024, 44(3): 966-971. |
[5] | 叶增辉, 刘华清, 张逢质. 有机光电催化合成研究进展[J]. 有机化学, 2024, 44(3): 840-870. |
[6] | 王竣永, 李娜, 柯杰, 何川. 电化学硅基化反应的研究进展[J]. 有机化学, 2024, 44(3): 927-939. |
[7] | 孙雪, 颜廷涛, 闫克鲁, 杨建静, 文江伟. 电化学促使α-重氮酯的磷酸化构筑亚膦酸腙[J]. 有机化学, 2024, 44(3): 1013-1020. |
[8] | 方新月, 黄雅雯, 胡新伟, 阮志雄. 电化学修饰氨基酸和多肽类化合物的研究进展[J]. 有机化学, 2024, 44(3): 903-926. |
[9] | 李梦帆, 程旭. 烯丙基芳香化合物的电化学选择性氧化酯化[J]. 有机化学, 2024, 44(3): 1005-1012. |
[10] | 何蔺恒, 夏稳, 周玉祥, 于贤勇. 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024, 44(3): 997-1004. |
[11] | 杨帆, 方婷, 杨桂春, 高梦. 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024, 44(3): 1021-1030. |
[12] | Hasil Aman, 常瑞, 叶俊涛. 氧化型光电催化促进的C—H键官能团化反应研究进展[J]. 有机化学, 2024, 44(3): 728-747. |
[13] | 吕帅, 朱钢国, 姚金忠, 周宏伟. 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024, 44(3): 780-808. |
[14] | 黄健, 张文珍. 碳氮键参与的电化学阴极还原反应研究进展[J]. 有机化学, 2024, 44(3): 825-839. |
[15] | 陈远航, 何劲宇, 张博, 王延钊, 孔令轩, 钱伟烽, 王娜娜, 段闻喜, 欧阳妍妍, 朱翠菊, 徐浩. 不对称电化学有机合成[J]. 有机化学, 2024, 44(3): 748-779. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||