有机化学 ›› 2024, Vol. 44 ›› Issue (11): 3409-3416.DOI: 10.6023/cjoc202405008 上一篇 下一篇
研究论文
收稿日期:
2024-05-07
修回日期:
2024-05-24
发布日期:
2024-07-02
Xinyu Zhanga, Jing Chena, Yongmin Maa,b,*()
Received:
2024-05-07
Revised:
2024-05-24
Published:
2024-07-02
Contact:
*E-mail:文章分享
开发了一种以苯乙炔或苯乙醛, 氯化铵和N,N-二甲基乙醇胺为原料, 在140 ℃条件下经三氟甲磺酸铁催化发生[2+2+1+1]环化反应, 其中N,N-二甲基乙醇胺既作为溶剂又作为单碳合成子参与构建3,5二芳基吡啶类化合物.
张鑫宇, 陈静, 马永敏. 以N,N-二甲基乙醇胺为单碳合成子构建3,5-二芳基吡啶的新方法[J]. 有机化学, 2024, 44(11): 3409-3416.
Xinyu Zhang, Jing Chen, Yongmin Ma. Construction of 3,5-Diarylpyridine Derivatives Using N,N-Dimethyl-ethanolamine as a Single-Carbon Synthon[J]. Chinese Journal of Organic Chemistry, 2024, 44(11): 3409-3416.
Entry | Catalyst | Solvent | “N” source (equiv.) | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | FeCl3 | DMEA | NH4OAc (1) | 140 | 21 |
2 | FeCl3 | DMEA | NH4Cl (1) | 140 | 35 |
3 | FeCl3 | DMEA | NH4I (1) | 140 | 19 |
4 | FeCl3 | DMEA | (NH4)2CO3 (1) | 140 | 20 |
5 | FeCl3 | DMEA | NH3.H2O (1) | 140 | Trace |
6 | FeCl3 | DMEA | Benzylamine (1) | 140 | 0 |
7 | FeCl3 | DMEA | NH4Cl (2) | 140 | 45 |
8 | FeCl3 | DMEA | NH4Cl (3) | 140 | 60 |
9 | FeCl3 | DMEA | NH4Cl (4) | 140 | 55 |
10 | FeCl2 | DMEA | NH4Cl (3) | 140 | 30 |
11 | Fe(OTf)3 | DMEA | NH4Cl (3) | 140 | 75 |
12 | Sc(OTf)3 | DMEA | NH4Cl (3) | 140 | 52 |
13 | Cu(OTf)2 | DMEA | NH4Cl (3) | 140 | 40 |
14 | Zn(OTf)2 | DMEA | NH4Cl (3) | 140 | 49 |
15b | Fe(OTf)3 | DMSO | NH4Cl (3) | 140 | 30 |
16b | Fe(OTf)3 | DMF | NH4Cl (3) | 140 | 43 |
17b | Fe(OTf)3 | Xylenes | NH4Cl (3) | 140 | 25 |
18b | Fe(OTf)3 | CH3CN | NH4Cl (3) | 140 | 20 |
19c | Fe(OTf)3 | DMSO/DMF | NH4Cl (3) | 140 | 0 |
20 | Fe(OTf)3 | DMEA | NH4Cl (3) | 80 | 0 |
21 | Fe(OTf)3 | DMEA | NH4Cl (3) | 100 | 12 |
22 | Fe(OTf)3 | DMEA | NH4Cl (3) | 120 | 36 |
23 | Fe(OTf)3 | DMEA | NH4Cl (3) | 160 | 40 |
Entry | Catalyst | Solvent | “N” source (equiv.) | T/℃ | Yield/% |
---|---|---|---|---|---|
1 | FeCl3 | DMEA | NH4OAc (1) | 140 | 21 |
2 | FeCl3 | DMEA | NH4Cl (1) | 140 | 35 |
3 | FeCl3 | DMEA | NH4I (1) | 140 | 19 |
4 | FeCl3 | DMEA | (NH4)2CO3 (1) | 140 | 20 |
5 | FeCl3 | DMEA | NH3.H2O (1) | 140 | Trace |
6 | FeCl3 | DMEA | Benzylamine (1) | 140 | 0 |
7 | FeCl3 | DMEA | NH4Cl (2) | 140 | 45 |
8 | FeCl3 | DMEA | NH4Cl (3) | 140 | 60 |
9 | FeCl3 | DMEA | NH4Cl (4) | 140 | 55 |
10 | FeCl2 | DMEA | NH4Cl (3) | 140 | 30 |
11 | Fe(OTf)3 | DMEA | NH4Cl (3) | 140 | 75 |
12 | Sc(OTf)3 | DMEA | NH4Cl (3) | 140 | 52 |
13 | Cu(OTf)2 | DMEA | NH4Cl (3) | 140 | 40 |
14 | Zn(OTf)2 | DMEA | NH4Cl (3) | 140 | 49 |
15b | Fe(OTf)3 | DMSO | NH4Cl (3) | 140 | 30 |
16b | Fe(OTf)3 | DMF | NH4Cl (3) | 140 | 43 |
17b | Fe(OTf)3 | Xylenes | NH4Cl (3) | 140 | 25 |
18b | Fe(OTf)3 | CH3CN | NH4Cl (3) | 140 | 20 |
19c | Fe(OTf)3 | DMSO/DMF | NH4Cl (3) | 140 | 0 |
20 | Fe(OTf)3 | DMEA | NH4Cl (3) | 80 | 0 |
21 | Fe(OTf)3 | DMEA | NH4Cl (3) | 100 | 12 |
22 | Fe(OTf)3 | DMEA | NH4Cl (3) | 120 | 36 |
23 | Fe(OTf)3 | DMEA | NH4Cl (3) | 160 | 40 |
[1] |
(a) Olbe L.; Carlsson E.; Lindberg P. Nat. Rev. Drug Discovery 2003, 2, 132.
pmid: 21504168 |
(b) Roughley S. D.; Jordan A. M. J. Med. Chem. 2011, 54, 3451.
doi: 10.1021/jm200187y pmid: 21504168 |
|
(c) Altaf A. A.; Shahzad A.; Gul Z.; Rasool N.; Badshah A.; Lal B.; Khan E. J. Drug Des. Med. Chem. 2015, 1, 1.
pmid: 21504168 |
|
(d) Hudson G. A.; Hooper A. R.; DiCaprio A. J.; Sarlah D.; Mitchell D. A. Org. Lett. 2021, 23, 253.
pmid: 21504168 |
|
(e) Kajita Y.; Ikeda S.; Yoshikawa M.; Fukuda H.; Watanabe E.; Yano J.; Lane W.; Miyamoto M.; Ishii T.; Nishi T.; Koike T. J. Med. Chem. 2022, 65, 3343.
pmid: 21504168 |
|
[2] |
(a) Kumar A.; Rhodes R.; Spychala J.; Wilson W.; Boykin D.; Tidwell R.; Dykstra C.; Hall J.; Jones S.; Schinazi R. Eur. J. Med. Chem. 1995, 30, 99.
doi: 10.1016/0223-5234(96)88214-6 pmid: 21423835 |
(b) Lucas S.; Negri M.; Heim R.; Zimmer C.; Hartmann R. W. J. Med. Chem. 2011, 54, 2307.
pmid: 21423835 |
|
(c) Hibi S.; Ueno K.; Nagato S.; Kawano K.; Ito K.; Norimine Y.; Takenaka O.; Hanada T.; Yonaga M. J. Med. Chem. 2012, 55, 10584.
pmid: 21423835 |
|
(d) Mohedas A. H.; Wang Y.; Sanvitale C. E.; Canning P.; Choi S.; Xing X.; Bullock A. N.; Cuny G. D.; Yu P. B. J. Med. Chem. 2014, 57, 7900.
pmid: 21423835 |
|
(e) Reimann S.; Parpart S.; Ehlers P.; Sharif M.; Spannenberg A.; Langer P. Org. Biomol. Chem. 2015, 13, 6832.
pmid: 21423835 |
|
[3] |
(a) van der Ark A. M.; Verweij A. M. A.; Sinnema A. J. Forensic Sci. 1978, 23, 693.
pmid: 20038125 |
(b) Tagat J. R.; McCombie S. W.; Barton B. E.; Jackson J. V.; Shortall J. Bioorg. Med. Chem. Lett. 1995, 5, 2143.
pmid: 20038125 |
|
(c) Aida W.; Ohtsuki T.; Li X.; Ishibashi M. Tetrahedron 2009, 65, 369.
pmid: 20038125 |
|
(d) Carroll F. I.; Ma W.; Deng L.; Navarro H. A.; Damaj M. I.; Martin B. R. J. Nat. Prod. 2010, 73, 306.
doi: 10.1021/np9006124 pmid: 20038125 |
|
(e) Zhang E.; Wang M.; Xu S.; Wang S.; Zhao D.; Bai P.; Cui D.; Hua Y.; Wang Y.; Qin S.; Liu H. Chin. J. Org. Chem. 2017, 37, 959 (in Chinese).
pmid: 20038125 |
|
(张恩, 王铭铭, 徐帅民, 王上, 赵娣, 白鹏燕, 崔得运, 化永刚, 王亚娜, 秦上尚, 刘宏民, 有机化学, 2017, 37, 959.)
doi: 10.6023/cjoc201610016 pmid: 20038125 |
|
[4] |
(a) Fang Z.; Zheng S.; Chan K. F.; Yuan W.; Guo Q.; Wu W.; Lui H. K.; Lu Y.; Leung Y. C.; Chan T. H.; Wong K. Y.; Sun N. Eur. J. Med. Chem. 2019, 161, 141.
|
(b) Zhao P.; Liu Y.; Zhang Y.; Wang L.; Ma Y. Org. Lett. 2024, 26, 2511.
|
|
(c) Zhang R.; Ding Y.; Ma R.; Xiao X.; Chen R.; Wang L.; Ma Y. Org. Chem. Front. 2023, 10, 780.
|
|
[5] |
(a) O'Hagan D. Nat. Prod. Rep. 2001, 17, 435.
|
(b) De Rycke N.; Couty F.; David O. R. P. Chem.-Eur. J. 2011, 17, 12852.
|
|
(c) Zhang R.; Ma R.; Chen R.; Wang L.; Ma Y. J. Org. Chem. 2024, 89, 1846.
|
|
(d) Fang J.; Fang J.; Rao Y.; Qiu H.; Pan Z.; Ma Y. Org. Biomol. Chem. 2024, 22, 2043.
|
|
(e) Liu Q.; Shi L.; Liu N. P. Chin. J. Org. Chem. 2019, 39, 2882 (in Chinese).
|
|
(刘铨瑶, 石磊, 刘宁, 有机化学, 2019, 39, 2882.)
doi: 10.6023/cjoc201903030 |
|
[6] |
(a) Chelucci G. Chem. Soc. Rev. 2006, 35, 1230.
pmid: 17225885 |
(b) Gibson V. C.; Redshaw C.; Solan G. A. Chem. Rev. 2007, 107, 1745.
pmid: 17225885 |
|
(c) Michaelos T. K.; Shopov D. Y.; Sinha S. B.; Sharninghausen L. S.; Fisher K. J.; Lant H. M. C.; Crabtree R. H.; Brudvig G. W. Acc. Chem. Res. 2017, 50, 952.
pmid: 17225885 |
|
(d) Zhang R.; Ma R.; Fu Q.; Chen J.; Ma Y. Chin. J. Org. Chem. 2022, 42, 854 (in Chinese).
pmid: 17225885 |
|
(张瑞芹, 马仁超, 傅琴姣, 陈静, 马永敏, 有机化学, 2022, 42, 854.)
doi: 10.6023/cjoc202109014 pmid: 17225885 |
|
[7] |
(a) Lewis D. E. Angew. Chem., Int. Ed. 2017, 56, 9660.
|
(b) Yan R.; Zhou X.; Li M.; Li X.; Kang X.; Liu X.; Huo X.; Huang G. RSC Adv. 2014, 4, 50369.
|
|
(c) Li Z.; Huang X.; Chen F.; Zhang C.; Wang X.; Jiao N. Org. Lett. 2015, 17, 584.
|
|
(d) Al Mehedi M. S.; George D. E.; Tepe J. J. J. Org. Chem. 2022, 87, 16820.
|
|
[8] |
Ranjani G.; Nagarajan R. Org. Lett. 2017, 19, 3974.
|
[9] |
Chuang T. H.; Chen Y. C.; Pola S. J. Org. Chem. 2010, 75, 6625.
|
[10] |
(a) Komatsu M.; Ohgishi H.; Takamatsu S.; Ohshiro Y.; Agawa T. Angew. Chem., Int. Ed. 2003, 21, 213.
|
(b) Vijn R. J.; Arts H. J.; Green R.; Castelijns A. Synthesis 1994, 1994, 573.
|
|
(c) Balasubrahmanyam S. N.; Jeyashri B.; Namboothiri I. N. N. Tetrahedron 1994, 50, 8127.
|
|
[11] |
Palacios F.; Alonso C.; Rubiales G.; Ezpeleta J. M. Eur. J. Org. Chem. 2001, 2001, 2115.
|
[12] |
(a) Sathish M.; Chetna J.; Hari Krishna N.; Shankaraiah N.; Alarifi A.; Kamal A. J. Org. Chem. 2016, 81, 2159.
doi: 10.1021/acs.joc.5b02712 pmid: 26828636 |
(b) Li J.; Sun L.; Zhao Y.; Shi C. Chin. J. Org. Chem. 2023, 43, 4168 (in Chinese).
pmid: 26828636 |
|
(李进京, 孙立娇, 赵岩, 史成阳, 有机化学, 2023, 43, 4168.)
doi: 10.6023/cjoc202306008 pmid: 26828636 |
|
[13] |
(a) Wang Q.; Wan C.; Gu Y.; Zhang J.; Gao L.; Wang Z. Green Chem. 2011, 13, 578.
|
(b) Xiang J. C.; Wang M.; Cheng Y.; Wu A. X. Org. Lett. 2016, 18, 24.
|
|
[14] |
Su M. D.; Liu H. P.; Cao Z. Z.; Liu Y.; Li H.; Nie Z. W.; Yang T. L.; Luo W. P.; Liu Q.; Guo C. C. J. Org. Chem. 2021, 86, 13446.
|
[15] |
(a) Mehmood H.; Iqbal M. A.; Ashiq M. N.; Hua R. Molecules 2021, 26, 6599.
|
(b) Li H.; Yan S.; Xu Y.; Ma C.; Zhang X.; Fan X. Org. Chem. Front. 2024, 11, 1917.
|
|
(c) Jia R.; Li B.; Zhang X.; Fan X. Org. Lett. 2020, 22, 6810.
|
|
(d) Gao H.; Zhou L.; Wan J. P.; Liu Y. J. Org. Chem. 2023, 88, 7188.
|
|
(e) Zhu B.; He J.; Zou K.; Li A.; Zhang C.; Zhao J.; Cao H. J. Org. Chem. 2023, 88, 11450.
|
|
[16] |
(a) Yan M.; Hider R. C.; Ma Y. Org. Chem. Front. 2019, 6, 1168.
|
(b) Yan M.; Ma R.; Chen R.; Wang L.; Wang Z.; Ma Y. Chem. Commun. 2020, 56, 10946.
|
|
(c) Qin Z.; Zhang R.; Ying S.; Ma Y. Org. Chem. Front. 2022, 9, 5624.
|
|
(d) Qin Z.; Ma R.; Ying S.; Li F.; Ma Y. Adv. Synth. Catal. 2022, 364, 3263.
|
|
(e) Geng M.; Kuang J.; Fang W.; Xiao X.; Ma Y. Org. Chem. Front. 2024, 11, 1198.
|
|
[17] |
(a) Barrios-Bermudez N.; Gonzalez-Avendano M.; Lado-Tourino I.; Cerpa-Naranjo A.; Rojas-Cervantes M. L. Nanomaterials 2020, 10, 749.
|
(b) Ma B.; Wang S.; Liu F.; Zhang S.; Duan J.; Li Z.; Kong Y.; Sang Y.; Liu H.; Bu W.; Li L. J. Am. Chem. Soc. 2019, 141, 849.
|
|
(c) Ma R.; Zhang R.; Xia H.; Wang L.; Ma Y. Eur. J. Org. Chem. 2024, 27, e202400089.
|
|
(d) Yamaguchi R.; Kurosu S.; Suzuki M.; Kawase Y. Chem. Eng. J. 2018, 334, 1537.
|
|
[18] |
De Giorgi M.; Voisin-Chiret A. S.; Sopková-de Oliveira Santos J.; Corbo F.; Franchini C.; Rault S. Tetrahedron 2011, 67, 6145.
|
[19] |
Avitia B.; MacIntosh E.; Muhia S.; Kelson E. Tetrahedron Lett. 2011, 52, 1631.
|
[20] |
Hachey A. C.; Fenton A. D.; Heidary D. K.; Glazer E. C. J. Med. Chem. 2023, 66, 398.
|
[1] | 傅艳华, 徐畅, 张超, 王怡莎, 冯高峰. 可见光诱导铁催化氮杂环的羟甲基化[J]. 有机化学, 2024, 44(7): 2265-2273. |
[2] | 于蕾, 盛康, 李亭, 唐从辉. 多相铁催化环状醚C(sp3)—H键活化的芳基烯烃氧烷基化[J]. 有机化学, 2024, 44(6): 1978-1986. |
[3] | 赵秋婷, 王文光. 铁催化二氧化碳选择性氢化、硼氢化和硅氢化[J]. 有机化学, 2024, 44(10): 3106-3116. |
[4] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[5] | 侯学会, 李议慧, 张庆玲, 刘俊桃, 陈亚静. 1,4-吡啶硫内鎓盐在有机合成中的研究与应用[J]. 有机化学, 2023, 43(11): 3844-3860. |
[6] | 王凯凯, 陈绍维, 李亚军, 李达谅, 鲍红丽. 铁催化1,3-共轭烯烃的Heck型脱羧烷基化反应[J]. 有机化学, 2021, 41(7): 2707-2714. |
[7] | 朱庆, 夏春谷, 刘超. 铁催化酮羰基的硼化反应合成α-羟基硼酸酯[J]. 有机化学, 2021, 41(2): 661-668. |
[8] | 邬林洋, 钟大猷, 刘文博. 无配体参与的铁催化分子内C(sp3)—H键胺化合成咪唑啉酮[J]. 有机化学, 2021, 41(10): 4083-4087. |
[9] | 孙越, 关瑞, 刘兆洪, 王也铭. 铁、钴、镍催化烯烃的硼氢化反应研究进展[J]. 有机化学, 2020, 40(4): 899-912. |
[10] | 何泽瑜, 范敏, 徐佳能, 胡越, 王露, 吴旭东, 夏春谷, 刘超. 铁催化酮类化合物脱氧双硼化制备非末端偕二硼[J]. 有机化学, 2019, 39(12): 3438-3445. |
[11] | 谢庭辉, 蒋筱莹, 米治胜, 李雪, 徐小河, 白仁仁, 帅棋, 谢媛媛. 微波辅助下通过Fe/O2催化C-H键官能团化合成喹啉-2-甲醛类化合物[J]. 有机化学, 2019, 39(11): 3294-3298. |
[12] | 刘强, 王彬, 彭小水, 黄乃正. 格氏试剂参与的铁催化偶联反应中的添加物效应(英文)[J]. 有机化学, 2018, 38(1): 40-50. |
[13] | 施冬冬, 鲍汉扬, 徐峥, 刘运奎. 铁催化分子内sp2-C-H键的胺化/芳构化反应合成6-芳基菲啶[J]. 有机化学, 2017, 37(5): 1290-1294. |
[14] | 李娟华, 刘昆明, 段新方, 刘晋彪. 铁催化碳-碳偶联反应研究进展[J]. 有机化学, 2017, 37(2): 314-334. |
[15] | 张钊瑞, 郑晓霖, 郭长彬. Ugi反应脱Boc保护基环合策略在含氮杂环合成中的应用[J]. 有机化学, 2016, 36(6): 1241-1265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||