Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (3): 840-870.DOI: 10.6023/cjoc202310034 Previous Articles Next Articles
Special Issue: 光电催化综述合集
REVIEWS
收稿日期:
2023-10-03
修回日期:
2023-12-28
发布日期:
2024-04-02
基金资助:
Zenghui Ye, Huaqing Liu, Fengzhi Zhang()
Received:
2023-10-03
Revised:
2023-12-28
Published:
2024-04-02
Contact:
*E-mail: zhangfengzhi@zjut.edu.cn
Supported by:
Share
Zenghui Ye, Huaqing Liu, Fengzhi Zhang. Recent Advances in Organic Electrophotocatalytic Synthesis[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 840-870.
[1] |
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
[2] |
Qiu Y.; Zhu C.; Stangier M.; Struwe J.; Ackermann L. CCS Chem. 2021, 3, 1529.
doi: 10.31635/ccschem.020.202000365 |
[3] |
Faraday M. Ann. Phys. Leipzig. 1834, 47, 438.
|
[4] |
Kolbe H. J. Prakt. Chem. 1847, 41, 138.
|
[5] |
Haber F. Z. Elektrochem. Angew. Phys. Chem. 1898, 5, 235.
|
[6] |
Wiebe A.; Gieshoff T.; Möhle S.; Rodrigo E.; Zirbes M.; Waldvogel S. R. Angew. Chem.,Int. Ed. 2018, 57, 5594.
doi: 10.1002/anie.v57.20 |
[7] |
Sauermann N.; Meyer T. H.; Qiu Y.; Ackermann L. ACS Catal. 2018, 8, 7086.
doi: 10.1021/acscatal.8b01682 |
[8] |
Yuan Y.; Lei A. Acc. Chem. Res. 2019, 52, 3309.
doi: 10.1021/acs.accounts.9b00512 |
[9] |
Qiu Y.; Kong W.-J.; Struwe J.; Sauermann N.; Rogge T.; Scheremetjew A.; Ackermann L. Angew. Chem.,Int. Ed. 2018, 57, 5828.
doi: 10.1002/anie.v57.20 |
[10] |
Wang X.; Xu X.; Wang Z.; Fang P.; Mei T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese)
doi: 10.6023/cjoc202003022 |
( 王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)
|
|
[11] |
Qiu Y.; Stangier M.; Meyer T. H.; Oliveira J. C. A.; Ackermann L. Angew. Chem.,Int. Ed. 2018, 57, 14179.
doi: 10.1002/anie.v57.43 |
[12] |
Barham J. P.; König B. Angew. Chem.,Int. Ed. 2020, 59, 11732.
doi: 10.1002/anie.v59.29 |
[13] |
Yu Y.; Guo P.; Zhong J.-S.; Yuan Y.; Ye K.-Y. Org. Chem. Front. 2020, 7, 131.
doi: 10.1039/C9QO01193E |
[14] |
Capaldo L.; Quadri L. L.; Ravelli D. Angew. Chem.,Int. Ed., 2019, 58, 17508.
doi: 10.1002/anie.v58.49 |
[15] |
Moutet J.-C.; Reverdy G. Tetrahedron Lett. 1979, 20, 2389.
doi: 10.1016/S0040-4039(01)86300-0 |
[16] |
Colomer I.; Batchelor-McAuley C.; Odell B.; Donohoe T. J.; Compton R. G. J. Am. Chem. Soc. 2016, 138, 8855.
doi: 10.1021/jacs.6b04057 |
[17] |
Romero N. A.; Nicewicz D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 |
[18] |
Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449 |
[19] |
Crisenza G. E. M.; Mazzarella D.; Melchiorre P. J. Am. Chem. Soc. 2020, 142, 5461.
doi: 10.1021/jacs.0c01416 pmid: 32134647 |
[20] |
Narayanam J. M. R.; Stephenson C. R. J. Chem. Soc. Rev. 2011, 40, 102.
doi: 10.1039/b913880n pmid: 20532341 |
[21] |
Goddard J.-P.; Ollivier C.; Fensterbank L. Acc. Chem. Res. 2016, 49, 1924.
doi: 10.1021/acs.accounts.6b00288 |
[22] |
Yoshida J.-I.; Kataoka K.; Horcajada R.; Nagaki A. Chem. Rev. 2008, 108, 2265.
doi: 10.1021/cr0680843 |
[23] |
Francke R.; Little R. D. Chem. Soc. Rev. 2014, 43, 2492.
doi: 10.1039/c3cs60464k pmid: 24500279 |
[24] |
Moeller K. D. Chem. Rev. 2018, 118, 4817.
doi: 10.1021/acs.chemrev.7b00656 pmid: 29498518 |
[25] |
Liu J.; Lu L.; Wood D.; Lin S. ACS Cent. Sci. 2020, 6, 1317.
doi: 10.1021/acscentsci.0c00549 |
[26] |
Siu J.C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547.
doi: 10.1021/acs.accounts.9b00529 |
[27] |
Zhu C.; Ang N. W. J.; Meyer T. H.; Qiu Y.; Ackermann L. ACS Cent. Sci. 2021, 7, 415.
doi: 10.1021/acscentsci.0c01532 |
[28] |
Novaes L. F. T.; Liu J.; Shen Y.; Lu L.; Meinhardt J. M.; Lin S. Chem. Soc. Rev. 2021, 50, 7941.
doi: 10.1039/d1cs00223f pmid: 34060564 |
[29] |
Lv S.; Han X.; Wang J.-Y.; Zhou M.; Wu Y.; Ma L.; Niu L.; Gao W.; Zhou J.; Hu W.; Cui Y.; Chen J. Angew. Chem.,Int. Ed. 2020, 59, 11583.
doi: 10.1002/anie.v59.28 |
[30] |
Ye Z., Wu Y., Chen N., Zhang H., Zhu K., Ding M., Liu M., Li Y., Zhang F. Nat. Commun. 2020, 11, 3628.
doi: 10.1038/s41467-020-17389-w |
[31] |
Shao D.; Wu Y.; Hu S.; Gao W.; Du Y.; Jia X.; Liu S.; Zhou M.; Chen J. ACS Sustainable Chem. Eng. 2022, 10, 10294.
doi: 10.1021/acssuschemeng.2c02597 |
[32] |
Moutet J.-C.; Reverdy G. J. Chem. Soc.,Chem. Commun. 1982, 654.
|
[33] |
Scheffold R.; Orlinski R. J. Am. Chem. Soc. 1983, 105, 7200.
doi: 10.1021/ja00362a047 |
[34] |
Yan H.; Hou Z.-W.; Xu H.-C. Angew. Chem.,Int. Ed. 2019, 58, 4592.
doi: 10.1002/anie.v58.14 |
[35] |
Matsui J. K.; Primer D. N.; Molander G. A. Chem. Sci. 2017, 8, 3512.
doi: 10.1039/C7SC00283A |
[36] |
Yan H.; Song J.; Zhu S.; Xu H.-C. CCS Chem. 2021, 3, 317.
doi: 10.31635/ccschem.021.202000743 |
[37] |
Qiu Y.; Scheremetjew A.; Finger L.H.; Ackermann L. Chem.-Eur. J. 2020, 26, 3241.
doi: 10.1002/chem.v26.15 |
[38] |
Qi J.; Xu J.; Ang H. T.; Wang B.; Gupta N. K.; Dubbaka S. R.; O’Neill P.; Mao X.; Lum Y.; Wu J. J. Am. Chem. Soc. 2023, 145, 24965.
|
[39] |
Huang H.; Strater Z. M.; Lambert T. H. J. Am. Chem. Soc. 2020, 142, 1698.
doi: 10.1021/jacs.9b11472 pmid: 31904939 |
[40] |
Huang H.; Strater Z. M.; Rauch M.; Shee J.; Sisto T. J.; Nuckolls C.; Lambert T. H. Angew. Chem.,Int. Ed. 2019, 58, 13318.
doi: 10.1002/anie.v58.38 |
[41] |
Xu P.; Chen P.-Y.; Xu H.-C. Angew. Chem.,Int. Ed. 2020, 59, 14275.
doi: 10.1002/anie.v59.34 |
[42] |
Lai X.-L.; Shu X.-M.; Song J.; Xu H.-C. Angew. Chem.,Int. Ed. 2020, 59, 10626.
doi: 10.1002/anie.v59.26 |
[43] |
Capaldo L.; Quadri L. L.; Merli D.; Ravelli D. Chem. Commun. 2021, 57, 4424.
doi: 10.1039/D1CC01012C |
[44] |
Chen Y.-J.; Deng W.-H.; Guo J.-D.; Ci R.-N.; Zhou C.; Chen B.; Li X.-B.; Guo X.-N.; Liao R.-Z.; Tung C.-H.; Wu L.-Z. J. Am. Chem. Soc. 2022, 144, 17261.
doi: 10.1021/jacs.2c08068 |
[45] |
Wang K.; Tian Y.; Li B.; Wang L.; Gao W.; Jia X.; Wang R.; Zhu Y.; Chen J. Green Synth. Catal. 2022, DOI: 10.1016/ j.gresc.2022.06.006.
|
[46] |
Yang Z.; Yang D.; Zhang S. J.; Tan C.; Li J.; Wang S.; Zhang H.; Huang Z.; Lei A. J. Am. Chem. Soc. 2022, 144, 13895.
doi: 10.1021/jacs.2c05520 |
[47] |
Gong M.; Huang M.; Li Y.; Zhang J.; Kim J. K.; Kim J. S.; Wu Y. Green Chem. 2022, 24, 837.
doi: 10.1039/D1GC03587H |
[48] |
Yang K.; Lu J.; Li L.; Luo S.; Fu N. Chem.-Eur. J. 2022, 28, e202202370.
doi: 10.1002/chem.v28.70 |
[49] |
Yang K.; Wang Y.; Luo S.; Fu N. Chem.-Eur. J. 2023, 29, e202203962.
doi: 10.1002/chem.v29.24 |
[50] |
Lai X.-L.; Xu H.-C. J. Am. Chem. Soc. 2023, 145, 18753.
doi: 10.1021/jacs.3c07146 |
[51] |
Fan W.; Zhao X.; Deng Y.; Chen P.; Wang F.; Liu G. J. Am. Chem. Soc. 2022, 144, 21674.
doi: 10.1021/jacs.2c09366 |
[52] |
Tan Z.; Jiang Y.; Xu K.; Zeng C. J. Catal. 2023, 417, 473.
doi: 10.1016/j.jcat.2022.12.033 |
[53] |
Wu S.; Žurauskas J.; Domański M.; Hitzfeld P. S.; Butera V.; Scott D. J.; Rehbein J.; Kumar A.; Thyrhaug E.; Hauer J.; Barham J. P. Org. Chem. Front. 2021, 8, 1132.
doi: 10.1039/D0QO01609H |
[54] |
Huang H.; Lambert T. H. Angew. Chem.,Int. Ed. 2020, 59, 658.
doi: 10.1002/anie.v59.2 |
[55] |
Gerson F.; Plattner G.; Yoshida Z. Mol. Phys. 1971, 21, 1027.
doi: 10.1080/00268977100102181 |
[56] |
Weiss R.; Schloter K. Tetrahedron Lett. 1975, 16, 3491.
doi: 10.1016/S0040-4039(00)91392-3 |
[57] |
Johnson R. W. Tetrahedron Lett. 1976, 17, 589.
doi: 10.1016/S0040-4039(00)77918-4 |
[58] |
Romero N. A.; Margrey K. A.; Tay N. E.; Nicewicz D. A. Science 2015, 349, 1326.
doi: 10.1126/science.aac9895 |
[59] |
Niu L.; Yi H.; Wang S.; Liu T.; Liu J.; Lei A. Nat. Commun. 2017, 8, 14226.
doi: 10.1038/ncomms14226 |
[60] |
Tay N. E. S.; Nicewicz D. A. J. Am. Chem. Soc. 2017, 139, 16100.
doi: 10.1021/jacs.7b10076 |
[61] |
Wang F.; Stahl S. S. Angew. Chem.,Int. Ed. 2019, 58, 6385.
doi: 10.1002/anie.v58.19 |
[62] |
Martínez C.; Muñiz K. Angew. Chem.,Int. Ed. 2015, 54, 8287.
doi: 10.1002/anie.v54.28 |
[63] |
Niu L.; Jiang C.; Liang Y.; Liu D.; Bu F.; Shi R.; Chen H.; Chowdhury A. D.; Lei A. J. Am. Chem. Soc. 2020, 142, 17693.
doi: 10.1021/jacs.0c08437 |
[64] |
Huang H.; Lambert T. H. Angew. Chem.,Int. Ed. 2021, 60, 11163.
doi: 10.1002/anie.v60.20 |
[65] |
Shen T.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 8597.
doi: 10.1021/jacs.1c03718 pmid: 34076424 |
[66] |
Shen T.; Lambert T. H. Science 2021, 371, 620.
doi: 10.1126/science.abf2798 pmid: 33542135 |
[67] |
Huang H.; Lambert T. H. J. Am. Chem. Soc. 2022, 144, 18803.
doi: 10.1021/jacs.2c08951 pmid: 36194776 |
[68] |
Wang Y.; Li L.; Fu N. ACS Catal. 2022, 12, 10661.
doi: 10.1021/acscatal.2c02934 |
[69] |
Hou Z.-W.; Yan H.; Song J.; Xu H.-C. Green Chem. 2023. 25, 7959.
doi: 10.1039/D3GC02126B |
[70] |
Zhang W.; Carpenter K. L.; Lin S. Angew. Chem.,Int. Ed. 2020, 59, 409.
doi: 10.1002/anie.v59.1 |
[71] |
Feldmeier C.; Bartling H.; Magerl K.; Gschwind R. M. Angew. Chem.,Int. Ed. 2015, 54, 1347.
doi: 10.1002/anie.v54.4 |
[72] |
de Gonzalo G.; Fraaije M. W. ChemCatChem 2013, 5, 403.
doi: 10.1002/cctc.v5.2 |
[73] |
Huang H.; Lambert T. H. J. Am. Chem. Soc. 2021, 143, 7247.
doi: 10.1021/jacs.1c01967 pmid: 33949852 |
[74] |
Shen T.; Li Y.-L.; Ye K.-Y.; Lambert T. H. Nature 2023, 614, 275.
doi: 10.1038/s41586-022-05608-x |
[75] |
Bi H.; Zhou Y.; Jiang W.; Liu J. Adv. Synth. Catal. 2022, 364, 1732.
doi: 10.1002/adsc.v364.10 |
[76] |
Zhao Y.; Duan M.; Deng C.; Yang J.; Yang S.; Zhang Y.; Sheng H.; Li Y.; Chen C.; Zhao J. Nat. Commun. 2023, 14, 1943.
doi: 10.1038/s41467-023-37620-8 |
[77] |
Liu X.; Chen Z.; Xu S.; Liu G.; Zhu Y.; Yu X.; Sun L.; Li F. J. Am. Chem. Soc. 2022, 144, 19770.
doi: 10.1021/jacs.2c06273 |
[78] |
Kim H.; Kim H.; Lambert T. H.; Lin S. J. Am. Chem. Soc. 2020, 142, 2087.
doi: 10.1021/jacs.9b10678 |
[79] |
Ghosh I.; Ghosh T.; Bardagi J. I.; König B. Science 2014, 346, 725.
doi: 10.1126/science.1258232 |
[80] |
Cowper N. G. W.; Chernowsky C. P.; Williams O. P.; Wickens Z. K. J. Am. Chem. Soc. 2020, 142, 2093.
doi: 10.1021/jacs.9b12328 |
[81] |
Rieth A. J.; Gonzalez M. I.; Kudisch B.; Nava M.; Nocera D. G. J. Am. Chem. Soc. 2021, 143, 14352.
doi: 10.1021/jacs.1c06844 pmid: 34432978 |
[82] |
Chen Y.-J.; Lei T.; Hu H.-L.; Wu H.-L.; Zhou S.; Li X.-B.; Chen B.; Tung C.-H.; Wu L.-Z. Matter 2021, 4, 2354.
doi: 10.1016/j.matt.2021.05.004 |
[83] |
Chernowsky C. P.; Chmiel A. F.; Wickens Z. K. Angew. Chem.,Int. Ed. 2021, 60, 21418.
doi: 10.1002/anie.v60.39 |
[84] |
Tian X.; Karl T. A.; Reiter S.; Yakubov S.; de Vivie-Riedle R.; König B.; Barham J. P. Angew. Chem.,Int. Ed. 2021, 60, 20817.
doi: 10.1002/anie.v60.38 |
[85] |
Zhong P.-F.; Tu J.-L.; Zhao Y.; Zhong N.; Yang C.; Guo L.; Xia W. Nat. Commun. 2023, 14, 6530.
doi: 10.1038/s41467-023-42264-9 |
[1] | Linheng He, Wen Xia, Yuxiang Zhou, Xianyong Yu. Electrocatalysis Decarboxylative Annulation of Benzol[e][1,2,3]-oxathiazine-2,2-dioxides with N-Arylglycines [J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 997-1004. |
[2] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[3] | Junying Zhang, Xiaojing Zhao, Ganpeng Li, Yonghui He. Electrochemical Synthesis of Masked Organoboronic Acids RB(dan) at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1815-1823. |
[4] | Yongzhou Pan, Xiujin Meng, Yingchun Wang, Muxue He. Recent Progress in Electrochemical Fixation of CO2 to Construct Carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1416-1434. |
[5] | Xun Xiang, Zhaolin He, Xiuqin Dong. Recent Advances of Efficient Synthesis of Chiral Molecules Promoted by Pd/Chiral Phosphoric Acid Synergistic Catalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 791-808. |
[6] | Jiawei Huang, Xiaoman Li, Liang Xu, Yu Wei. Electrochemical Decarboxylation Coupling of α-Keto Acids with Thiophenols: A New Avenue for the Synthesis of Thioesters [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 756-762. |
[7] | Haiqiong Li, Mengyun Yin, Fenfen Xie, Zhengbing Zhang, Pan Han, Linhai Jing. Synthesis of Nitrile via Electrochemical Appel Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2229-2235. |
[8] | Zhengjiang Fu, Zhenjiang Yang, Li Sun, Jian Yin, Xuezheng Yi, Hu Cai, Aiwen Lei. Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 600-606. |
[9] | Xiaolong Guo, Yuxian Wang, Zhiqiang Zhao, Qing Wang, Jian Zuo, Luyao Wang. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1H)-ones and the Performance Evaluation via Electro-descriptors [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 641-649. |
[10] | Hongxia Li, Peng Chen, Zhilin Wu, Yuhan Lu, Junmei Peng, Jingyang Chen, Weimin He. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH4SCN [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3398-3404. |
[11] | Deng Zhu, Zhi-Min Chen. Application of Chiral Lewis Base/Brønsted Acid Synergistic Catalysis Strategy in Enantioselective Synthesis of Organic Sulfides [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3015-3032. |
[12] | Lei Xu, Fang Wang, Fan Chen, Shengqing Zhu, Lingling Chu. Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 1-15. |
[13] | Zhiheng Zhao, Ming Li, Yaqin Zhou, Yonghui He, Lizhu Zhang, Ganpeng Li, Lijun Gu. Synthesis of 1,2,4-Triazoles via the Electrochemical Oxidative [3+2] Annulation [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2476-2484. |
[14] | Yaqin Zhou, Zhiheng Zhao, Liang Zeng, Ming Li, Yonghui He, Lijun Gu. Recent Advance in Organic Electrochemical Synthesis of Nitrogenous Heterocyclic Compounds Involving Haloids as Mediators [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1072-1080. |
[15] | Hongyu Wu, Xianyong Yu, Zhong Cao. Electrochemical Multicomponent Synthesis of α-Ketoamides from α-Oxocarboxylic Acids, Isocyanides and Water [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4712-4717. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||