Chinese Journal of Organic Chemistry ›› 2025, Vol. 45 ›› Issue (1): 220-226.DOI: 10.6023/cjoc202406006 Previous Articles Next Articles
ARTICLES
收稿日期:2024-06-06
修回日期:2024-08-16
发布日期:2024-09-26
基金资助:
Yongsheng Lia, Xiaowen Tanga, Xu Lib(
), Peng Yanga(
)
Received:2024-06-06
Revised:2024-08-16
Published:2024-09-26
Contact:
*E-mail: Supported by:Share
Yongsheng Li, Xiaowen Tang, Xu Li, Peng Yang. Process Development and Scale-Up of (S)-tert-Butyl(6-oxopiperdin-3-yl)carbamate[J]. Chinese Journal of Organic Chemistry, 2025, 45(1): 220-226.
| Entry | Base | Solvent | Temp.b/℃ | Dibenzyamine/equiv. | Base/equiv. | Yield c/% |
|---|---|---|---|---|---|---|
| 1 | Et3N | CH3CN | 85 | 1.1 | 1.0 | 24 |
| 2 | i-Pr2NEt | CH3CN | 85 | 1.1 | 1.0 | 20 |
| 3 | DBU | CH3CN | 85 | 1.1 | 1.0 | 10 |
| 4 | K2CO3 | CH3CN | 85 | 1.1 | 1.0 | 89 |
| 5 | Cs2CO3 | CH3CN | 85 | 1.1 | 1.0 | 93 |
| 6 | None | CH3CN | 85 | 1.1 | 1.0 | Trace |
| 7 | K2CO3 | THF | 85 | 1.1 | 1.0 | 60 |
| 8 | K2CO3 | DMF | 85 | 1.1 | 1.0 | 50 |
| 9 | K2CO3 | DMSO | 85 | 1.1 | 1.0 | 49 |
| 10 | K2CO3 | 1,4-Dioxane | 85 | 1.1 | 1.0 | 86 |
| 11 | K2CO3 | CH3CN | 75 | 1.1 | 1.0 | 86 |
| 12 | K2CO3 | CH3CN | 65 | 1.1 | 1.0 | 74 |
| 13 | K2CO3 | CH3CN | 85 | 1.05 | 1.0 | 86 |
| 14 | K2CO3 | CH3CN | 85 | 1.05 | 0.8 | 85 |
| Entry | Base | Solvent | Temp.b/℃ | Dibenzyamine/equiv. | Base/equiv. | Yield c/% |
|---|---|---|---|---|---|---|
| 1 | Et3N | CH3CN | 85 | 1.1 | 1.0 | 24 |
| 2 | i-Pr2NEt | CH3CN | 85 | 1.1 | 1.0 | 20 |
| 3 | DBU | CH3CN | 85 | 1.1 | 1.0 | 10 |
| 4 | K2CO3 | CH3CN | 85 | 1.1 | 1.0 | 89 |
| 5 | Cs2CO3 | CH3CN | 85 | 1.1 | 1.0 | 93 |
| 6 | None | CH3CN | 85 | 1.1 | 1.0 | Trace |
| 7 | K2CO3 | THF | 85 | 1.1 | 1.0 | 60 |
| 8 | K2CO3 | DMF | 85 | 1.1 | 1.0 | 50 |
| 9 | K2CO3 | DMSO | 85 | 1.1 | 1.0 | 49 |
| 10 | K2CO3 | 1,4-Dioxane | 85 | 1.1 | 1.0 | 86 |
| 11 | K2CO3 | CH3CN | 75 | 1.1 | 1.0 | 86 |
| 12 | K2CO3 | CH3CN | 65 | 1.1 | 1.0 | 74 |
| 13 | K2CO3 | CH3CN | 85 | 1.05 | 1.0 | 86 |
| 14 | K2CO3 | CH3CN | 85 | 1.05 | 0.8 | 85 |
| Entry | Conditions | Resulta |
|---|---|---|
| 1b | Pd/Cc (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h | 1/10 (1/12, 85%) |
| 2b | Pd/C (1.3 mol%), H2 (101 kPa), K2CO3 (0.03 equiv.), MeOH, 22 ℃, 48 h | 11 (80%), 12 (10%) |
| 3b | Pd/C (1.3 mol%), H2 (101 kPa), NaHCO3 (1.0 equiv.), MeOH, 22 ℃, 48 h | 1/10 (3.7/1, 88%) |
| 4d | Pd/C (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h; then K2CO3 (0.03 equiv.), 2 h | 1 (89%) |
| 5d | Pd(OH)2/Ce (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h; then K2CO3 (0.03 equiv.), 2 h | 1 (75%) |
| 6d | Pt/Cf (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h; then K2CO3 (0.03 equiv.), 2 h | 1 (24%) |
| Entry | Conditions | Resulta |
|---|---|---|
| 1b | Pd/Cc (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h | 1/10 (1/12, 85%) |
| 2b | Pd/C (1.3 mol%), H2 (101 kPa), K2CO3 (0.03 equiv.), MeOH, 22 ℃, 48 h | 11 (80%), 12 (10%) |
| 3b | Pd/C (1.3 mol%), H2 (101 kPa), NaHCO3 (1.0 equiv.), MeOH, 22 ℃, 48 h | 1/10 (3.7/1, 88%) |
| 4d | Pd/C (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h; then K2CO3 (0.03 equiv.), 2 h | 1 (89%) |
| 5d | Pd(OH)2/Ce (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h; then K2CO3 (0.03 equiv.), 2 h | 1 (75%) |
| 6d | Pt/Cf (1.3 mol%), H2 (101 kPa), MeOH, 22 ℃, 48 h; then K2CO3 (0.03 equiv.), 2 h | 1 (24%) |
| Entry | Conditions | Yielda/% | Purityb/% |
|---|---|---|---|
| 1 | i-PrOH/petroleum ether (V∶V=1∶3, 5 mL), 22 ℃, 12 h | 88 | 99.4 |
| 2 | MeOt-Bu/petroleum ether (V∶V=1∶3, 5 mL), 22 ℃, 12 h | 97 | 90.1 |
| 3 | EtOAc/petroleum ether (V∶V=1∶3, 5 mL), 22 ℃, 12 h | 96 | 93.7 |
| 4 | EtOAc/petroleum ether (V∶V=1∶2, 5 mL), 22 ℃, 12 h | 95 | 96.1 |
| 5 | EtOAc/petroleum ether (V∶V=1∶1, 5 mL), 22 ℃, 12 h | 94 | 96.7 |
| 6 | EtOAc/petroleum ether (V∶V=1∶1, 7 mL), 22 ℃, 12 h | 94 | 99.2 |
| 7 | EtOAc/petroleum ether (V∶V=1∶1, 10 mL), 22 ℃, 12 h | 94 | 99.8 |
| 8 | EtOAc/petroleum ether (V∶V=1∶1, 10 mL), 0 ℃, 12 h | 95 | 99.3 |
| 9 | EtOAc/petroleum ether (V∶V=1∶1, 10 mL), 40 ℃, 12 h | 94 | 99.8 |
| Entry | Conditions | Yielda/% | Purityb/% |
|---|---|---|---|
| 1 | i-PrOH/petroleum ether (V∶V=1∶3, 5 mL), 22 ℃, 12 h | 88 | 99.4 |
| 2 | MeOt-Bu/petroleum ether (V∶V=1∶3, 5 mL), 22 ℃, 12 h | 97 | 90.1 |
| 3 | EtOAc/petroleum ether (V∶V=1∶3, 5 mL), 22 ℃, 12 h | 96 | 93.7 |
| 4 | EtOAc/petroleum ether (V∶V=1∶2, 5 mL), 22 ℃, 12 h | 95 | 96.1 |
| 5 | EtOAc/petroleum ether (V∶V=1∶1, 5 mL), 22 ℃, 12 h | 94 | 96.7 |
| 6 | EtOAc/petroleum ether (V∶V=1∶1, 7 mL), 22 ℃, 12 h | 94 | 99.2 |
| 7 | EtOAc/petroleum ether (V∶V=1∶1, 10 mL), 22 ℃, 12 h | 94 | 99.8 |
| 8 | EtOAc/petroleum ether (V∶V=1∶1, 10 mL), 0 ℃, 12 h | 95 | 99.3 |
| 9 | EtOAc/petroleum ether (V∶V=1∶1, 10 mL), 40 ℃, 12 h | 94 | 99.8 |
| [1] |
Vitaku, E. V.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
|
| [2] |
Abdelshaheed, M. M.; Fawzy, I. M.; El-Subbagh, H. I.; Youssef, K. M. Future J. Pharm. Sci. 2021, 7, 188.
|
| [3] |
Chen, Q.-S.; Li, J.-Q.; Zhang, Q.-W. Pharm. Fronts 2023, 5, e1.
|
| [4] |
Frolov, N.; Vereshchagin, A. N. Int. J. Mol. Sci. 2023, 24, 2937.
|
| [5] |
Dowarah, J.; Singh, V. P. Bioorg. Med. Chem. 2020, 28, 115263.
|
| [6] |
Goel, P.; Alam, O.; Naim, M. J.; Nawaz, F.; Iqbal, M.; Alam, M. I. Eur. J. Med. Chem. 2018, 157, 480.
|
| [7] |
Rkash, R.; Asati, V.; Kashaw, S. K.; Agarwal, S.; Parwani, D.; Bhattacharya, S.; Mallick, C. Mini-Rev. Med. Chem. 2021, 21, 362.
|
| [8] |
Sun, W.; Liao, A.; Lei, L.; Tang, X.; Wang, Y.; Wu, J. Chin. Chem. Lett. 2025, 36, 109855.
|
| [9] |
Marineau, J. J.; Hamman, K. B.; Hu, S.; Alnemy, S.; Mihalich, J.; Kabro, A.; Whitmore, K. M.; Winter, D. K.; Roy, S.; Ciblat, S.; Ke, N.; Savinainen, A.; Wilsily, A.; Malojcic, G.; Zahler, R.; Schmidt, D.; Bradley, M. J.; Waters, N. J.; Chuaqui, C. J. Med. Chem. 2022, 65, 1458.
|
| [10] |
Johannessen, L.; Henry, S.; Sawant, P.; D’lppolito, A.; Ke, N.; Lefkowitz, A.; Eaton, M.; Dworakowski, W.; Rosario, M.; Hodgson, G. Blood 2021, 138, 1205.
|
| [11] |
Blair, H. A. Drugs 2023, 83, 1315.
|
| [12] |
Liu, J.; Solan, R.; Wolk, R.; Plotka, A.; O'Gorman, M. T.; Winton, J. A.; Kaplan, J.; Purohit, V. S. Br. J. Clin. Pharmacol. 2023, 89, 2208.
|
| [13] |
Zhang, Z.; Wallace, M. B.; Feng, J.; Stafford, J. A.; Skene, R. J.; Shi, L.; Lee, B.; Aertgeerts, K.; Jennings, A.; Rongda, A.; Xu, R.; Kassel, D. B.; Kaldor, S. W.; Navre, M.; Webb, D. R.; Gwaltney II, S. L. J. Med. Chem. 2011, 54, 510.
|
| [14] |
Grimshaw, C. E.; Jennings, A.; Kamran, R.; Ueno, H.; Nishigaki, N.; Kossaka, T.; Tani, A.; Sano, H.; Kinugawa, Y.; Koumura, E.; Shi, L.; Takeuchi, K. PloS One 2016, 11, e0157509.
|
| [15] |
Feng, J.; Zhang, Z.; Wallace, M. B.; Stafford, J. A.; Kaldor, S. W.; Kassel, D. B.; Navre, M.; Shi, L.; Skene, R. J.; Asakawa, T.; Takeuchi, K.; Xu, R.; Webb, D. R.; Gwaltney, S. L. J. Med. Chem. 2007, 50, 2297.
|
| [16] |
Fujita, H.; Taniai, H.; Murayama, H.; Ohshiro, H.; Hayashi, H.; Sato, S.; Kikuchi, N.; Komatsu, T.; Komatsu, K.; Komatsu, K.; Narita, T.; Yamada, Y. Endocr. J. 2014, 61, 159.
|
| [17] |
Panday, S. K.; Langlois, N. Tetrahedron Lett. 1995, 36, 8205.
|
| [18] |
Langlois, N.; Van Bac, N.; Dahuron, N.; Delcroix, J.-M.; Deyine, A.; Griffart-Bruned, D.; Chiaroni, A.; Riche, C. Tetrahedron 1995, 51, 3571.
|
| [19] |
Langlois, N. Tetrahedron Lett. 2002, 43, 9531.
|
| [20] |
Masse, J.; Langlois, N. Heterocycles 2009, 77, 417.
|
| [21] |
Thomas, A.; Bhavar, P. K.; Lingam, V. S. P. R.; Joshi, N. K. WO 2004/022536, 2004.
|
| [22] |
Albers, R.; Ayala, L.; Clareen, S. S.; Delgado Mederos, M. M.; Hilgraf, R.; Hedge, S.; Hughes, K.; Kois, A.; Plantevin-Krenitsky, V.; Mccarrick, M.; Nadolny, L.; Palanki, M.; Sahasrabudhe, K.; Sapienza, J.; Satoh, Y.; Sloss, M.; Sudbeck, E.; Wright, J. WO 2006/076595, 2006.
|
| [23] |
Do, S.; Hu, H.; Kolesnikov, A.; Tsui, V. H.; Wang, X. WO 2014/001377, 2014.
|
| [24] |
Marineau, J. J.; Chuaqui, C.; Ciblat, S.; Kabro, A.; Piras, H.; Whitmore, K. M.; Lund, K.-L. WO 2019/143719, 2019.
|
| [25] |
Marineau, J. J.; Chuaqui, C. WO 2020/093011, 2020.
|
| [26] |
Li, L.; Zhang, Y. CN 104098563, 2014.
|
| [27] |
Huang, S.-B.; Nelson, J. S.; Weller, D. D. J. Org. Chem. 1991, 56, 6007.
|
| [28] |
Ghosh, A. K.; Leshchenko-Yashchuk, S.; Anderson, D. D.; Bal- dridge, A.; Noetzel, M.; Miller, H. B.; Tie, Y.; Wang, Y.-F.; Koh, Y.; Weber, I. T.; Mitsuya, H. J. Med. Chem. 2009, 52, 3902.
|
| [29] |
Langlois, N. Org. Lett. 2002, 4, 185.
|
| [30] |
Tan, H.; Reed, M.; Gahm, K. H.; King, T.; Seran, M. D.; Bostick, T.; Luu, V.; Semin, D.; Cheetham, J.; Larsen, R.; Martinelli, M.; Reider, P. Org. Process Res. Dev. 2008, 12, 58.
|
| [1] | Cen Zhou, Xin Zhao, Xiao Zhang. Research Progress in Benzene-Forming Cyclotrimerization Reactions [J]. Chinese Journal of Organic Chemistry, 2025, 45(1): 42-55. |
| [2] | Jing Xu, Juan Zhang, Wenchao Gao, Fanhui Meng, Peng Yang, Honghong Chang. Application of Hydrophobic Catalysts in Organic Synthesis Reactions [J]. Chinese Journal of Organic Chemistry, 2025, 45(1): 136-150. |
| [3] | Qingbao Gong, Xiang Lü, Changjiang Yu, Wanwan Li, Quansheng Zhao, Lijuan Jiao, Erhong Hao. Aggregation-Induced Emission (AIE) Active Fluoroboronated Pyridylhydrazinyl Aldehyde Hydrozone Dyes: Synthesis, Crystal Structure and Optical Properties [J]. Chinese Journal of Organic Chemistry, 2024, 44(8): 2545-2553. |
| [4] | Yiping Sun, Demao Chen, Ling He, Zuli Wang. Na2S2O8 Mediated C—H Amination of Imidazo[1,2-α]pyridines with Heteroaromatic Amines under Metal-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2024, 44(5): 1667-1674. |
| [5] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
| [6] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
| [7] | Ran Zhou, Chunmei Yuan, Tao Zhang, Piao Mao, Yi Liu, Kaini Meng, Hui Xin, Wei Xue. Design, Synthesis and Bioactivity of Chalcone Derivative Containing Quinazolinone [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3196-3209. |
| [8] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
| [9] | Linsheng Bai, Peng Hong, Anguo Ying. Research Progress of Functional Polyacrylonitrile Fiber in Promoting Organic Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1241-1270. |
| [10] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
| [11] | Qian Dou, Taimin Wang, Lijing Fang, Hongbin Zhai, Bin Cheng. Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1386-1415. |
| [12] | Shiquan Gao, Chuangjun Liu, Junfeng Yang, Junliang Zhang. Cobalt-Catalyzed Electrochemical Reductive Coupling of Alkynes and Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1559-1565. |
| [13] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
| [14] | Silin Chen, Yunhui Yang, Chao Chen, Congyang Wang. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 1-16. |
| [15] | Runye Gao, Lingling Zuo, Fang Wang, Chuanying Li, Huajiang Jiang, Pinhua Li, Lei Wang. Recent Advances in Controllable Organic Reactions Induced by Visible Light without External Photocatalyst [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1883-1903. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||